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Abstract

Are similar, or even identical, mechanisms used in the computational modeling of speech segmen-
tation, serial image processing, and music processing? We address this question by exploring how
TRACX2, a recognition-based, recursive connectionist autoencoder model of chunking and sequence
segmentation, which has successfully simulated speech and serial-image processing, might be applied
to elementary melody perception. The model, a three-layer autoencoder that recognizes “chunks” of
short sequences of intervals that have been frequently encountered on input, is trained on the tone
intervals of melodically simple French children’s songs. It dynamically incorporates the internal
representations of these chunks into new input. Its internal representations cluster in a manner that is
consistent with “human-recognizable” melodic categories. TRACX2 is sensitive to both contour and
proximity information in the musical chunks that it encounters in its input. It shows the “end-of-word”
superiority effect demonstrated by Saffran et al. (1999) for short musical phrases. The overall findings
suggest that the recursive autoassociative chunking mechanism, as implemented in TRACX2, may be
a general segmentation and chunking mechanism, underlying not only word- and image-chunking, but
also elementary melody processing.
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1. Introduction

Are similar, or even identical, mechanisms used in the computational modeling of speech
segmentation, serial image processing, and music processing? We address this question by
exploring how TRACX2 (French & Cottrell, 2014; French & Mareschal, 2017; French,
Addyman, & Mareschal, 2011; Mareschal & French, 2017), a recognition-based connection-
ist recursive autoencoder model of chunking and sequence segmentation that has successfully
simulated a significant body of empirical data in the area of syllable- and image-sequence
recognition, might also be applied to elementary melody perception. TRACX2 is, indeed, a
model of segmentation and chunking, and this article might more appropriately be said to be
about “melody segmentation,” but, in our view, segmentation and chunking are the processes
that give rise to perception, hence our title.

The features of early music perception (i.e., in young children) have been the object of
study for many years. It is well known that listeners tend to group together similar sounds
and, based on regularities perceived in the melodies to which they are exposed, learn to
anticipate what will come next. Theoretical frameworks have been proposed to account for
these features of the early developmental stages of music perception and various statisti-
cal/computational models have been used to simulate them. In the present paper, we will
show that a single low-level memory-based segmentation-and-chunking mechanism is able
to reproduce some of the basic characteristics of music perception. The work presented here
builds on earlier work segmentation-and-chunking in natural language and image processing
(e.g., Christiansen, Allen, & Seidenberg, 1998; Cleeremans & McClelland, 1991).

Music perception is more complex than the segmentation and chunking of syllable-streams
or image-streams of simple geometric objects, and for this reason, the work in this paper is
focused on melody perception, in particular, segmentation and chunking as a first, crucial step
toward full music perception. The input to TRACX2 consisted of melodies taken from chil-
dren songs (i.e., a children’s songs being coded as melody only, i.e., as a sequence of notes),
without taking into account the duration of the notes. Timbre, pauses, chords, and emphases,
all present in more complex music, were rare in these songs and when they did occur, they
were removed. This simplified input comes close to the environment that infants and children
actually hear when listening to children’s songs (e.g., lullabies, play songs, etc.). TRACX2 is
used here to simulate some of the early developmental stages of music learning, in particular,
melody-related learning. We will show that its internal representations cluster in a human-
like manner, that its contour information is also encoded in these representations, and that the
ends of motives have a particular importance for the model, as they do for infants. In addition,
we briefly compare our model to four other models of sequence segmentation—namely, first-
order Markov models, PARSER (Perruchet & Vinter, 1998, 2002), a recurrent auto encoder
(RAE, Socher, Pennington, Huang, Ng, & Manning, 2011), and a simple recurrent network
(SRN, Elman, 1990; Cleeremans & McClelland, 1991).

This article is organized around a series of studies. After a brief summary of what is already
known about music perception, we use TRACX2 to simulate four families of studies. We
begin by explaining the details of the method used in the simulations, the input data, their
internal representations, and the impact of the temporal organization of the tone sets/units
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(which we refer to as “words,” following the tradition of speech segmentation studies, which
TRACX2 simulated initially) on the results. We then show that the simple chunking mech-
anism instantiated by TRACX2 can explain three features of human melody perception—
namely:

• Melodic motives (defined here as short melodic excerpts of 3–4 notes, i.e., 2–3 inter-
vals) are identified more rapidly when TRACX2 has already been exposed to other,
similar, but not identical, structures. In other words, in TRACX2, as in humans, prior
learning improves subsequent recognition of similar items, whether or not they were in
the training set.

• TRACX2 is responsive, as are humans, to the melodic contours of the motives it has
identified.

• When learning a new melody, TRACX2 recognizes the end of familiar motives bet-
ter than their beginning, an observation previously reported for humans in statistical
learning experiments using melodies/tone sequences.

2. Music perception: Similarities and differences with syllable-sequence and
image-sequence processing

2.1. Music perception

At least two different principles have been suggested for how the human auditory sys-
tem binds discrete sounds together into perceptual units (e.g., Bendixen et al., 2013): the
feature-similarity principle, which is based on linking together sounds with similar charac-
teristics over time (temporal proximity, pitch proximity, timbre similarity, etc.) and the pre-
dictability principle, which is based on linking together sounds that follow each other in a
predictable way (e.g., listeners expect upcoming tone-sequences in a melody to be similar to
tone-sequences they have already heard either in that particular melody or in general). These
principles apply to intervallic differences between notes, to meter, to accents and dynamics, to
the consonance of sounds and higher-level properties of music linked to tonal structures, such
as the role of the tonic, of other key-defining elements like third- and fifth-scale degrees, or
the equivalence of tones separated by octaves (e.g., Krumhansl, 1983, Schellenberg, Adachi,
Purdy, & McKinnon, 2002; Deutsch, 2013). In the simulations presented in this paper, we
have simplified the musical material to isochronous melodies and focused on relative pitch,
with its intervals and melodic contour.

When tones of different pitch heights are linked together in a sequence, a melody emerges.
The differences in pitch height between two adjacent tones (e.g., the tones C and D are sepa-
rated by two semitones in the upward direction, +2) define intervals, which are the elements
of the melodic contour. Contour refers to the pattern of ups and downs of pitch from tone to
tone in a melodic sequence. For example, the sequence with the tones C-D-G-E-C-C can be
coded in terms of intervals (+2 +5 –3 –4 0), which gives rise to a contour (+ + – – = ). Both
types of information describe the melody in terms of “relative pitch” information. This means
that the melody can be placed at different absolute pitch heights (or be put at different tonal
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degrees in a given tonal key; Dowling, 1978), while still respecting the same interval pattern
and contour (e.g., Dowling & Fujitani, 1971). The coding of tone sequences as relative pitch
information enables the recognition of a melody regardless of the pitch range of the singer.
Even infants can encode tone sequences in terms of relative pitch information by ignoring the
change of the pitch range while detecting intervallic changes in the melodic sequence in both
short-term and long-term memory tasks (Trehub, Morrongiello, & Thorpe, 1985; Plantinga
& Trainor, 2005). Similar patterns have also been observed in adult listeners. For example,
in short-term memory recognition tasks in a delayed-matching-to-sample paradigm, perfor-
mance is better when the “different” item includes a contour change compared to when it
preserves the contour (e.g., Dowling, 1978).

Melodic contour has also been shown to play a role in listeners’ melodic expectations,
allowing them to predict upcoming tone(s) (e.g., Huron, 2006). Narmour (1990) has pro-
posed a theoretical framework for melodies, the implication-realization model, that generates
predictions for listeners’ expectations. It applies Gestalt principles to the influence of melodic
contour (i.e., the patterns of ups and downs) and interval sizes. A just-heard melodic interval
“implies” a certain kind of continuation, and the “realization” of this melodic “implication”
allows listeners to integrate the tones into larger melodic patterns. Namour’s model contains
a set of principles, whereby listeners expect future tones to be similar to previous tones, to
be proximate, to provide a good continuation, and so on. The predictions of Narmour’s rather
complex model have been tested in a number of experimental contexts (e.g., Carlsen, 1981;
Krumhansl, 1995, 1998; Schellenberg, 1996; Unyk & Carlsen, 1987). Results have led to the
proposal of reduced versions of the Narmour model that focus on pitch proximity and pitch
reversal (Krumhansl, 1995, 1998; Schellenberg, 1996; Schellenberg et al., 2002).

Even though the application of Gestalt principles to music can lead to the hypothesis of
an innate, hard-wired basis for music perception, analyses of the statistical distribution of
tones also support the hypothesis that listeners can become sensitive to these distributions
and features via exposure alone, which then influence melodic expectancy formation (e.g.,
Huron, 2006). Krumhansl and colleagues applied tone statistics combined with behavioral
measurements to the perceptual expectations of listeners for two different musical styles
(Finnish spiritual folk hymns, Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola, 1999,
and North Sami yoiks, Krumhansl et al., 2000). Trained on these data, a self-organizing map
(SOM, Kohonen, 1982) suggests that listeners become sensitive to the statistical distributions
of tones as well as to higher-order statistics, such as two- or three-tone transitions. SOMs are
unsupervised connectionist networks that learn regularities in the environment through expo-
sure alone (i.e., without an explicit teacher signal). These networks produce representations
of regularities that can be used to simulate listeners’ behavior (e.g., in terms of perception,
expectations, or memory). Krumhansl et al. (1999, 2000) focused on melodic expectations
in different styles, while others have used SOMs to simulate tonal knowledge representation
with underlying tonal–harmonic relations (Leman, 1995; Griffith, 1994; Tillmann, Bharucha
& Bigand, 2000). An SOM, whose connections are shaped by exposure to musical material
without a teacher signal, can then be used to simulate empirical data on music perception and
memory, as well as tonal expectations (e.g., Tillmann et al., 2000).
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Statistical and computational models, as well as various artificial neural networks, have
been proposed to describe and simulate human music perception. A significant advantage of
connectionist models is their capacity to adapt in such a way that representations, categoriza-
tions, or associations between events can be learned.

Various other computational approaches have been proposed to simulate musical compo-
sition, music performance, and improvisation, as well as perception (cf. Cope, 1989; Todd
& Loy, 1991; Griffith & Todd, 1999). Music-perception simulations have addressed the per-
ception of timbre, tones, chords, and sequences as well as temporal structures. In addition to
cognitive simulations, powerful computational models, such as deep neural nets, have been
used to extract harmonic information from musical audio signals (Korzeniowski, 2018). Other
algorithms have been developed in the field of music-information retrieval to automatically
detect and extract repeated patterns from musical scores (Müller & Clausen, 2007, Nieto &
Farbood, 2014) or sound files. However, these latter computational approaches, even though
powerful, are unconcerned with the cognitive validity of the procedures and mechanisms
used. For cognitive scientists, the simulation of music perception is relevant only insofar
as the algorithms used simulate, at least qualitatively, the cognitive processes of the human
brain. This includes the generation of errors, confusions, and other problems that arise in real
human perception of music, thereby potentially gaining a better understanding of how the
human cognitive system processes music.

In the present paper, we adopt this approach and apply a well-known connectionist
segmentation-and-chunking architecture (TRACX2) to musical material and, specifically, to
melodic processing. This model has previously been successfully applied to the simulation
of sequential verbal and visual processing. The extension of the TRACX2 architecture to
a new type of material would further strengthen its psychological plausibility as a general
segmentation-and-chunking mechanism. That said, it is clear that the model, as well as the
simplified, interval information input to it, must be considered merely as a first step in devel-
oping statistically driven models (i.e., models that do not include explicit musical rules) of
early music perception. One must crawl before one can walk, and it is our hope that this
model will provide a jumping off point for future, more sophisticated models based on some
of its architectural principles.

2.2. Syllable- and image-sequence processing: Similarities and differences to melody
processing

TRACX2, and its predecessor, TRACX, have been able to successfully simulate a wide
range of experimental data in the area of syllable- and image-sequence data, among them
infant data from Saffran, Aslin, and Newport (1996a,b), Aslin, Saffran, and Newport (1998),
Kirkham, Slemmer, and Johnson (2002), Slone and Johnson (2018, two experiments), and
French et al. (2011), Equal Transitional-Probability experiment), as well as adult data from
Perruchet and Desaulty (2008, two experiments), Giroux and Rey (2009), Frank, Goldwa-
ter, Griffiths, and Tenenbaum (2010, two experiments), and Brent and Cartwright (1996).
TRACX/TRACX2 have also been shown to be able to generalize to new input and to develop
clusters of emergent internal representations that correspond to the clusters of the input data
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and simulate top-down influences on perception, as observed in the human data sets (French
et al., 2011).

2.2.1. Similarities
There are a number of obvious similarities between syllable sequences and music interval

sequences. A first similarity is linked to the sequentiality of items presented to the system:
musical intervals in a melody are processed in a sequential manner. In addition, the sequences,
in both visual and auditory modalities, exhibit statistical regularities (nonuniform distribu-
tion of the atomic elements, recurring substructures, different transitional probabilities [TPs]
from one atomic element to the other, etc.) Furthermore, boundaries exist between chunks of
graphical motives or sounds. Atomic elements and their aggregates have forms that make it
possible to define similarities and distances between them, which can be expressed in terms
of perceptual distance. Sequence segmentation and chunking require learning. And this learn-
ing is particularly sensitive to the closeness of elements, to the adjacency of sounds, syllables,
and image features. Generalizations to new sequences based on prior learning occur, and prior
learning influences new learning.

These similarities suggest that TRACX2 could be an appropriate model for reproducing
some of the basic features of melody-sequence processing, thereby hinting at the potential
generality of TRACX2’s recursive autoassociative chunking mechanism for sequence seg-
mentation and chunking.

2.2.2. Differences
There are, however, a number of differences between syllable-sequence, image-sequence,

and melody-sequence processing. A chunk in a syllable sequence generally corresponds to a
“word” in a given language. A chunk in an image sequence generally corresponds to some
higher-level image (e.g., a feature or an object). Studies by Saffran et al. (1996a,b) and Aslin
et al. (1998) on infant word learning and work by Kirkham et al. (2002), Tummeltshammer,
Amso, French, and Kirkham (2017), and Slone and Johnson (2018) on image-sequence learn-
ing, all start with a predefined set of “words” (short syllable sequences or short sequences of
geometric images). Long syllable or image sequences are then constructed by concatenating
these “words.” These sequences of “words” are heard or seen by the infants or adults who are
then tested for their capacity to extract these words from the continuous stream. This imple-
mentation mirrors processes related to language acquisition, partly based on the segmentation
of the speech stream into word units. The same applies for studies on human image-sequence
segmentation (Chantelau, 1997). For a given piece of music, however, there is nothing that
corresponds to a predefined set of sequentially presented tones or sets of tones (“words”)
out of which the piece of music is built. In a melody, there is generally no such direct cor-
respondence between chunks of notes and clearly recognizable musical “words” (even if in
most musical pieces there are highly identifiable motives, like the 4-note opening motif of
Beethoven’s Fifth Symphony). Nevertheless, “chunks” of frequently occurring sequences of
notes or intervals do fall into certain human-recognizable categories (e.g., a rising interval
followed by a descending interval), and listeners are sensitive to this information.
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Fig. 1. The three-layer TRACX2 architecture with feed-forward weights between each successive fully connected
layer.

3. Computational simulations of melody perception with TRACX2. General methods

3.1. General architecture of TRACX2

TRACX2 (French & Cottrell, 2014; French & Mareschal, 2017; Mareschal & French,
2017), and its closely related predecessor, TRACX (French et al., 2011), are recursive connec-
tionist autoencoders (Pollack, 1989, 1990; Blank, Meeden, & Marshall, 1992, Socher et al.,
2011) that model sequence segmentation and chunk extraction. The TRACX architecture was
originally developed to simulate a pair of classic experiments (Saffran et al., 1996a; Aslin
et al., 1998) in infant syllable-stream segmentation and chunking. The key features of both
the TRACX and TRACX2 architectures (see Fig. 1) are as follows:

– it is a three-layer autoencoder (i.e., an autoassociator with a hidden layer) that modifies
its weights so that it can reproduce on output what is on its input;

– it recognizes “chunks” of sequential items that have been frequently encountered on
input;

– it dynamically incorporates the internal representations developed in its hidden layer
into new input;

– its internal representations cluster in a manner that is consistent with how the input
clusters (i.e., similar chunks have similar internal representations);

– it generalizes well to new input.

The key point about an autoencoder network is that the degree to which its output matches
its input is a measure of how often the network has encountered that input before. If it has
encountered a particular input often, its output will closely match that input. If, on the other
hand, it has not encountered a particular input before, or has encountered it only rarely, there
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will be a significant error between the input to the network and the output produced by that
input.

The TRACX2 architecture consists of three layers as shown in Fig. 1. The input layer is
divided into two parts of equal length, the left-hand side (LHS) and the right-hand side (RHS).
Crucially, the hidden layer is the same size (i.e., has the same number of nodes) as the LHS
and the RHS of the input layer. Bipolar inputs, {–1, 1}, were used. The standard mean squared
error function was the objective function used with the backpropagation algorithm.

As with prior simulations using TRACX2, the learning rate of the network was fixed at
0.01 and there was no momentum term. A Fahlman offset (Fahlman, 1988) of 0.1 was used
to eliminate flat spots in the learning. The network weights were initialized to random values
between –0.5 and 0.5. A bias node was added to the input and hidden layers. A modified ReLU
(Rectified Linear Unit) squashing function at the hidden and output layers, which was linear
over the interval [–5, 5] and –1 for output less than –5 and 1 for output greater than 5, was
used. (A tanh function was used in previous versions of TRACX2. We decided to use a ReLU
function because it has become standard practice, especially for deep neural networks, and
because it is considerably faster to calculate (Glorot, Bordes, & Bengio, 2011) and, finally, it
can be adjusted, if need be, more easily than tanh.

Results for all simulations were averaged over 20 runs of the model with different starting
weights of the connection matrices, with the exception of the calculations on the internal
representations because combining the network’s internal representations over several runs is
problematic.

3.2. Weight changes

The “teacher” that drives TRACX2’s learning is the input itself. In other words, on each
weight-change iteration, the network attempts to reproduce on output what was on its input.
The difference between the actual output of the network and the input drives the Generalized
Delta Rule (Rumelhart & McClelland, 1986), which is used to change the weights of the
connection matrices between the layers. A mean distance, defined as the mean of the absolute
values of the differences between all of the corresponding values of the input and the output
vectors, is used to calculate a dissimilarity measure, denoted by E in Fig. 1. To understand
the chunking mechanism implemented by TRACX2, we will consider that items: S1, S2, …,
St–1, St, St+1, … are sequentially input to the network. At each time step, one new item is
put into the RHS of the input. Assume that St–1 and St are currently on input. This input,
[St–1, St], is fed through the network. This produces a vector, Ht, at the hidden layer and a
vector on output, [Outt–1, Outt], each of whose terms is between –1 and 1. This latter vector is
compared to the input vector, [St–1, St], and a measure of dissimilarity, E, between the two is
computed. E is always between 0 (if the input–output correspondence is perfect) and 2 (if it
is as bad as possible). Based on this dissimilarity, E, the weights of the connections between
the Hidden-to-Output and the Input-to-Hidden layers are changed according to the standard
backpropagation algorithm (Rumelhart & McClelland, 1986).

3.3. Context-dependent input

What is put on the input of TRACX2 on the next iteration depends on the size of E. On the
next time step, t+1, a weighted combination of St and the content of the hidden units Ht, is put
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Fig. 2. The architecture of TRACX2. (Hid refers to Hidden units. LHS/RHS to the Left-hand side/Right-hand side
of the input layer.)

in the LHS of the input unit: (1–�)*Ht + �*St, where � is simply E squashed by a slightly
modified tanh function to be between 0 (when E = 0) and 1 (when E = 2). A value, which is
referred to as Temperature, determines the shape of this modified tanh. The larger the value
of Temperature, the steeper this curve. The higher value of this parameter, the steeper the
tanh function that determines �. In the current implementation, we set Temperature = 5. The
system also puts the next item, St+1, in the sequence into the RHS of the input. This means
that if � is close to 1 (as is the case at the beginning of learning, when the difference between
the network’s input and what it produces on output is high), the network essentially slides
item St from the RHS of the input to the LHS (and puts St+1 into the RHS of the input). If, on
the other hand, � is very small, the network “assumes” that it has seen the input pair [St–1,
St] many times before (which is the only way � could be very small). Any pair of inputs
that occur together many times is considered by the network to constitute a “chunk,” which
is encoded by the hidden units, Ht. Thus, on the next iteration (i.e., at time t+1), the network
puts, not St, but essentially Ht, TRACX’s hidden-unit representation of the chunk [St–1, St]
into the LHS of the input, and then, as before, puts St+1 (the next incoming item) into the
RHS of the input. When � is neither large nor very small, the content at t+1 of the LHS of
the input is a mixture of the internal representation, Ht, and of the preceding RHS, St (Fig. 2).

In this way, the network chunks frequently seen pairs of input and reuses those chunks
dynamically to potentially create increasingly larger chunks from the input. Assume, for
example, that the item subsequence, abc, is a frequently repeated subsequence in the item
sequence. At some point, the pair, a-b, on input (a in the LHS and b in the RHS of the input)
would be recognized as having been seen together often and E would become small. There-
fore, a-b will be considered to be a chunk by the network. TRACX2’s internal representation
(i.e., hidden-layer representation) of a-b would be H(ab). So, on the next time step, essentially
H(ab) plus a very small contribution from b, rather than only b, would be put into the LHS of
the input and, as always, the next item in the sequence, in this case, c, would be taken from
the item sequence and put into the RHS of the input. Once the input pair [H(ab), c] produced
output that closely resembled the input, [H(ab), c] would be chunked as H(abc). In this way,
larger and larger chunks of items, if they occur together frequently in the item stream, will be
chunked by TRACX2.
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10 of 43 D. Defays, R. M. French, B. Tillmann / Cognitive Science 47 (2023)

Fig. 3. Encoding of intervals between notes. The number indicates the number of semitone steps between the notes
and the +/– sign the direction (+ up or – down).

It is important to note at this stage that if � is always given a value of 0, the network
will function as a RAE. In the present paper, we have extensively compared the behavior of
TRACX2 to both the RAE and an SRN.

3.4. Input data

We trained TRACX2 on a series of well-known French children’s songs in which only
pitches are considered (all with equal duration). These songs (Set 1) were: Ah les crocodiles;
Bateau sur l’eau; Fais dodo, Colas mon p’tit frère; Au clair de la lune; Ainsi font; Une souris
verte; Ah vous dirai-je maman; Pomme de reinette; Sur le pont d’Avignon; Frappe, frappe,
petite main. To ensure that our results were not dependent on our choice of children songs,
we also trained TRACX2 on a second set of similar children’s songs (Set 2): Alouette, gentille
alouette; Biquette ne veut pas sortir du chou; Dans la forêt lointaine; Je te tiens, tu me tiens;
Le bon roi Dagobert; Il était une bergère; J’ai du bon tabac; J’ai perdu le do; Frère Jacques;
Il court le furet. Features, such as rhythm, meter, tempo, harmony, and texture, were not taken
into account. Based on the importance of relative pitch, intervals, and melodic contour in
music perception, for all of the simulations reported in this paper, we encoded, not notes,
but rather the intervals between notes. So, just as the “primitives” in Saffran et al. (1996a,b)
and Aslin et al. (1998) were individual syllables, the primitives in Slone and Johnson (2018)
were a small number of the geometrical shapes (e.g., crosses, triangles, and circles), and the
primitives in Saffran, Johnson, Aslin, and Newport (1999) were musical notes, the primitives
of our simulations were the intervals between successive notes. The difference with respect
to the above studies, of course, is that we did not construct the melodies used from our set of
primitives.

In order to test a possible prior-learning effect of the network’s exposure to these children’s
songs, we used the first 42 measures of the Allegro Assai of the Sonata for Violin Solo in C
Major BWV 1005 by J. S. Bach.

The children’s songs and the part of the Bach sonata BWV 1005 that we used in the prior-
learning study required a total of 39 intervals (Fig. 5b). (The children’s songs contained only
25 of these intervals.) Fig. 3 shows a short melody with labels of pitch and the intervals
between pairs of tones. From the note A to the note E, there is a decrease in pitch by five
semitones, hence an encoding of –5. Between E and B, on the other hand, there is a rise of
seven semitones, thus +7. (Fig. 3).

Fig. 4 shows how these intervals were labeled for the purpose of the present simulations.
For convenience and accessibility for nonmusician readers, we labeled each of the intervals
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D. Defays, R. M. French, B. Tillmann / Cognitive Science 47 (2023) 11 of 43

Fig. 4. The labeling of the 39 different intervals found in the children’s songs and in the Bach sonata.

from –19 to 19 with capital letters included or from a to y, instead of using the music-theory
terms, with + or – indicating the direction (rising or falling) of the interval. Two-note intervals
are designated in our paper here by capital letters or lowercase letters: A, B, … a, b, c, …, x,
y, … Y, Z. There were only 25 intervals (from –12 to +12) in the children’s songs, and these
were labeled with lowercase letters from a to y (see Fig. 4).

Two types of encoding were tested. We initially used a one-hot encoding scheme, where
each interval was represented by a single unit set to 1 with all others set to –1. This type of
encoding was used by TRACX and TRACX2 when simulating segmentation and chunking
of syllable- and image-sequences (French et al., 2011; Mareschal & French, 2017). But we
rapidly realized the limitations of that scheme for encoding musical sequences. Unlike for
syllables and geometrical images, there was a clear need to impose a distance metric on the
input coding of intervals. In a musical piece, the passage from the tone C to the tone D is
perceived as being very different than going from C to A, something one-hot encoding cannot
capture. The first pair describes an upward movement with a distance of two semitones (+2),
whereas the second pair describes a downward movement with a distance of three semitones
(–3). Depending on the pitch-height difference of the two tones, the pairs/contours described
in this manner have a greater or lesser perceptual similarity. Our study of TRACX2’s internal
representations after learning, for example, clearly showed the necessity of maintaining the
proximity information of the intervals input to the network. We, therefore, replaced the tra-
ditional one-hot encoding by what we called an “ordinal” encoding of the input (also called
“thermometer encoding” in the machine-learning literature). In addition, the error measure,
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12 of 43 D. Defays, R. M. French, B. Tillmann / Cognitive Science 47 (2023)

E, used to drive TRACX2’s backpropagation learning had to be adapted to this type of input
encoding: the original Chebyshev distance (a maximum distance) used in prior versions of
TRACX and TRACX2 had to be replaced by the mean absolute difference between the input
and output vectors. Finally, we made the assumption that listeners are perfectly able to dis-
criminate the here used tone differences. This is a reasonable assumption as the required min-
imal discrimination between two tones here was a semitone apart (i.e., +1 or –1), and pitch
discrimination thresholds for nonmusicians have been reported to be inferior to a semitone
(e.g., an average of 0.22 semitones, Pralus et al., 2019).

The ordinal encoding of the musical intervals encountered in the set of children’s songs
was done as follows:

A 1, –1, –1, –1, –1, –1, …, –1
B 1, 1, –1, –1, –1, –1, …, –1
C 1, 1, 1, –1, –1, –1, …, –1
…
X –1, …, –1, –1, –1, 1, 1, 1
Y –1, …, –1, –1, –1, –1, 1, 1
Z –1, …, –1, –1, –1, –1, –1, 1

Ordinal encoding reflects both the size and direction of the intervals. So, for example, m is
the interval corresponding to the repetition of a note and, therefore, has a value of 0, o is the
interval corresponding to a rise in pitch of two semitones, and t corresponds to a rise of seven
or a perfect fifth. Ordinal encodings of m and o differ by two bits, whereas m and t differ by
seven bits. The use of ordinal encoding corresponds, or at least approximates, what a human
would perceive in listening to m and o versus m and t.

3.5. Procedures used for training and testing

The entire training corpus of children’s songs was presented to the TRACX2 network for
30 epochs. We chose this small number of epochs compared to the many thousands of epochs
generally used in connectionist networks, in an attempt to simulate, in a very approximate
and conservative manner, the number of times a young child might be exposed to these songs.
On each training epoch, the order of the songs presented to the network was randomized. It
is clear that many children listen to these songs considerably more than 30 times, but our aim
was to avoid typical connectionist training regimes of many thousands of epochs, since it is
not clear what these enormous numbers of training cycles actually correspond to empirically.
We, therefore, chose a small number of epochs to model the data, even though this might
seem unusual in comparison to standard connectionist simulations.

3.6. Description of the training data

The distribution of all the intervals contained in the two sets of children songs is shown
in Fig. 5a. By far the most frequently encountered interval was the one in which the two
successive notes are identical. This contrasts with an excerpt of a Bach sonata that constituted
one of our test pieces, in which there were no such intervals (Fig. 5b). In addition, in the
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D. Defays, R. M. French, B. Tillmann / Cognitive Science 47 (2023) 13 of 43

Fig. 5. (a) The distributions of all intervals encountered in the two training corpora of children’s songs (Set 1, Set
2). (b) Distribution of intervals in the first 42 measures of Bach’s sonata for violin BWV 1005. The size of the
intervals is indicated on the x-axis. Note the complete absence of the “flat” interval, m, of size = 0.

children’s song corpus, less consonant intervals, such as tritones (e.g., s = +6) and minor
sixths (u, +8), were completely absent.

The first set of 10 songs used to train the network contained a total of 437 intervals. During
training, there was no intervallic connection between the last interval of one song and the first
interval of the next song. The average size (measured in semitones) of the 437 intervals was
–0.0092. In other words, ascending (+) intervals nearly exactly balanced out descending (–)
intervals. Their standard deviation (measured in semitones) was 3.45.

We also analyzed the distribution of all 2- and 3-interval “words” in the training corpus.
In keeping with the literature on sequence segmentation (e.g., Saffran et al., 1996a, b; Aslin
et al., 1998; Slone & Johnson, 2018), we have called short subsequences of intervals “words”
instead of using terminology like bigrams, trigrams, or triplets. Fig. 6 shows this distribution
for 2-interval words in Set 1 of the children’s songs.

mm words (i.e, words consisting of two occurrences of the “flat” interval, m, in which
both notes are identical) are, by far, the most frequently encountered 2-interval words in the
training corpus. For 3-interval words, mmm was the most common. (These distributions are
essentially the same when the program is run on the second set of children’s songs.)
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Fig. 6. Raw frequencies of 2-interval words appearing in the first training corpus at least five times.

3.7. Word error calculation

The degree to which TRACX2 recognizes words is based on the input–output error pro-
duced when a word is presented to its input. For 2-interval words, the word is encoded and
input to the network. Activation then spreads via the hidden layer to the output and the error
value, E, is calculated, as indicated earlier, as the mean absolute difference between the input
and output vectors. A small error means that the word is well recognized by (i.e., is “familiar”
to) the system, whereas a large error means the word is not well recognized by the network,
because it is new or has been seen only infrequently by the network.

For 3-interval words, the error-calculation is somewhat more complex and will be explained
by means of a concrete example. Consider the 3-interval word, kmm. At time t, the interval k
is put on the LHS of the input, and m on the RHS. km is then fed through the network and the
output error, E1, is calculated. E1 is then converted by a modified tanh into � (see Section 3.3
Context-dependent input), which then determines how much of the hidden-unit activations
and the RHS activations at time t are to be included in the LHS of input at time t+1 (see
Fig. 2). In other words, as was done during the original learning of the first two intervals, the
LHS is filled with a combination of the hidden-unit vector (Ht) plus the RHS input vector—
specifically, (1–�)*Ht + �*RHS. The encoding of the second m is then put into the RHS of
the input vector. This full input is then fed to the output nodes of the network, and the mean
absolute error between input and output (E2) is calculated. The average of E1 and E2 is used
as the error-measure for kmm.

4. Study 1: TRACX2’s internal representations

In this section, we examine TRACX2’s internal representations. We address the following
question : What kind of information is encoded in TRACX2’s internal representations and
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how is that information organized? Three different studies (St1.1, St1.2, and St1.3) will be
considered.

In the original TRACX paper, French et al. (2011) showed that the internal representations
of TRACX clustered in a way that tracked the grammatical structure of the syllable sequences
that were input to it. Do we get similar results and do TRACX2’s internal representations
create clusters of similar musical 2-interval words? St1.1, therefore, looked at the “topological
organization” of TRACX2’s internal representations.

We then decided to examine the internal representation of longer words. St1.2 studied
whether the network keeps a trace in its internal representations of the values of the inter-
vals that define these longer words.

Finally, we studied (St1.3) the relationship between the errors of words and their temporal
location in the training set. In particular, we investigated whether there are primacy or recency
effects.

4.1. General method

In the three studies, we considered the internal representations and the errors that TRACX2
generated after training on the children’s songs. The simulations were done on both the pri-
mary set (Set 1) and the verification set (Set 2) of children’s songs, and the results were essen-
tially identical. We present the results of a number of simulations carried out by TRACX2
(Fig. 8) and compare the performance of the model with other systems—namely, first-order
Markov chains (i.e., TPs only), PARSER, an RAE, and an SRN.

4.2. Principal components analysis grouping of 2-interval word contours (St1.1)

4.2.1. Method
We trained TRACX2 on one set of children’s songs. We then performed a principal com-

ponents analysis (PCA) of the first two principal components of the 39-element hidden-unit
representations of all of the 84 2-interval words in the training corpus. The various types of
contours of 2-interval words can be defined depending on whether their component intervals
were rising (R), falling (F), or flat ( = ). In all, nine clusters of 2-interval contours will thus
be considered: rising-rising (RR), flat-rising ( = R), falling-rising (FR), falling-flat (F = ),
falling-falling (FF), flat-falling ( = F), rising-falling (RF), rising-flat (R = ), and, finally,
flat-flat ( = = ).

4.2.2. Results
Unsurprisingly, no reasonable clustering of the hidden-unit representations was obtained

when we used one-hot coding for the intervals input to the network. The points projected
onto the plane of the first and second principal components did not cluster according to their
contour. However, when ordinal coding was used, we discovered that the internal representa-
tions of TRACX2 cluster in a very meaningful way (Fig. 7).

Fig. 7 (“TRACX2 contours”) shows the space defined by the first two principal components
of the hidden-unit representations of the 84 2-interval words found in the first set of children’s
songs. This figure clearly shows that 2-interval words with similar contours tend to group
together. It is interesting to note that the clusters containing a flat interval are exactly where
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Fig. 7. Comparison of TRACX2’s and RAE’s clusters of internal-representation of 2-interval-word contours after
30 epochs of learning of the children’s songs.
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they should be with respect to the larger clusters on either side of them. For example, consider
RR (R means “rising”), the cluster of hidden-unit representations of 2-interval words where
both intervals are rising, and RF (F means “falling”), the cluster where the first interval rises
and the second falls. R = ( = means “flat”) is the cluster representations of words whose
first interval rises (like RR and RF) and whose second interval is flat (i.e., “between” rising
and falling). In other words, the R = cluster should reasonably fall between the RR and RF
clusters, which, in fact, it does. The same is true for all of the other clusters containing a flat
interval.

In addition, for TRACX2, within each class of intervals containing the flat interval, m, and
a rising or falling interval (i.e., R = , = R, F = , and = F), the distance of each word in the
class from mm (the word with two flat intervals, = = ) depends on the size of the rising or
falling interval making up the word. To see this, consider the clusters F = , made up of the
words: {fm, hm, im, km, lm} and R = , made up of the words: {nm, om, pm, qm, rm, tm, vm}.
The sizes of the two intervals making up each word are shown in square brackets. Starting
at mm (i.e., “ = = ”) and moving downward through the class, F = consists of, in order: {lm
= [–1,0], km = [–2,0], im = [–4,0], hm = [–5,0], and fm = [–7,0]}. Starting at mm (i.e., “
= = ”) and moving upward through the class, R = , consists of, in order: {nm = [1,0], om =
[2,0], pm = [3,0], qm = [4,0], rm = [5,0], tm = [7,0], vm = [9,0]}.

Thus, it can be seen that distances and directions from “ = = ” (the “flat word”) correspond
precisely to the size and +/– direction of the nonflat interval in each of the words in these two
classes. The same is true for the classes = R and = F.

4.3. Does the memory trace of longer words contain traces of its components? (St1.2)

4.3.1. Method
We carried out analyses on longer words to see whether a trace is kept in the internal rep-

resentations of the values of the successive intervals that made up the words in the children’s
songs. An example illustrates the method we used. Consider the 4-interval word mnoh. It can
be characterized in two different ways:

(i) from the values of its four intervals, namely, 0 (m), +1 (n), +2 (o), and –5 (h). We will
denote these four values by I1(mnoh), I2(mnoh), I3(mnoh), I4(mnoh), respectively;

(ii) from its internal representation, denoted by R(mnoh), a vector of 39 real numbers.

Consider I1. It is the function that associates the 4-interval word mnoh with the value of its
first interval, that is, I1(mnoh) = 0. As training and chunking progress, m is first chunked with
n, then mn is chunked with o and, finally, mno is chunked with h. This means that the interval
m, as such, has progressively disappeared as a distinct input to the network. But is its value
retained in one way or another in the internal representation, R(mnoh)? In other words, can
we reconstruct I1 from R? And are I2, I3, and I4 also “hidden” in R(mnoh).

A simple way to determine the extent to which I1, I2, I3, and I4 are “present” in R(mnoh) is
to calculate the multiple correlation between I1 and R (as well as I2, I3, and I4, respectively,
with R). If this correlation is high, then the value of I1 can be derived as a linear combination
of the components of R, which means that it can be reconstructed from R.
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Table 1
Multiple square correlations of subwords making up longer words (3- or 4-interval words)

3-interval words

Coding

Multiple square
correlation with

I1

Multiple square
correlation with

I2

Multiple square
correlation with

I3

One-hot 0.44 (0.38) 0.63 (0.45) 0.93 (0.90)
Ordinal 0.97 (0.98) 0.98 (0.96) 1 (1)

4-interval words

Coding

Multiple square
correlation with

I1

Multiple square
correlation with

I2

Multiple square
correlation with

I3

Multiple square
correlation with

I4

One-hot 0.23 (0.26) 0.36 (0.32) 0.57 (0.41) 0.84 (0.80)
Ordinal 0.84 (0.83) 0.85 (0.91) 0.97 (0.97) 1 (1)

4.3.2. Results
The analysis carried out on longer words showed that, with ordinal encoding, a trace was

kept in the internal representations of the values of the successive intervals that made up the
words in the children’s songs. With one-hot coding, this trace was much poorer (see Table 1),
which is one of the main reasons that we rejected one-hot coding for modeling early melody
perception.

The table below gives the values of the multiple correlations for both one-hot and ordinal
encoding for words of length 3 and 4. We show in parentheses the values obtained on the
second set of children songs.

Clearly, ordinal encoding enables the system to keep a trace of the components making
up its internal representations of the whole structure of the words. As expected, the trace
decreases with the length of the word. The final interval of a word is better memorized than
the first one.

These results go some way in demonstrating a “chunking” effect at the level of nonadjacent
dependencies. The fact that both I1 and I3, for 3-interval words, and I1 and I4 for 4-interval
words, have a high multiple correlation with the internal representation means that the system
establishes through its internal representations a link between nonadjacent intervals. However,
to show that TRACX2 is explicitly sensitive to nonadjacent dependencies would require addi-
tional analyses as chunks are progressively built from co-occurrences of adjacent elements.
This is clearly an issue that should be explored in future work.

4.4. Word errors and their relation to frequency and order of appearance in the training set
(St1.3)

4.4.1. Method
We examined the errors associated with the 2-interval words and their relation to their

frequency and order of appearance in the training sets. To investigate the possibility of a
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primacy effect, we take the musical sequence obtained by chaining the 10 different songs (no
break between the songs) to get a new input of length 437. After training the network on that
sequence, we obtain new errors. They are compared with the previous ones (generated with
the 10 songs in the way described in Section 3). We also modified the sequence in different
ways by moving occurrences of some words to the beginning of the sequence. This was done
to test the possible effect of the order of appearance of those words on their associated errors.

4.4.2. Results
Errors associated with 2-interval words are negatively correlated with their frequencies (r =

–0.35). A word that has been seen by the system frequently generally will have a smaller error
on output than infrequently encountered words. However, for certain words in the training
corpus, this is not the case. For example, the 2-interval word, mi, has a low error on output
(0.16), even though it occurs relatively infrequently in the training corpus (only four times).
On the other hand, the more frequent 2-interval word, ok, has a high frequency of occurrence
of 17 but, nonetheless, has a higher output error (0.19) than mi.

This apparent discrepancy is due to the impact of the temporal organization of words. A
close look at the songs in the training set shows that mi occurs at the beginning of one of the
10 children’s songs, thereby potentially producing a primacy effect. After training the network
on a new sequence obtained by concatenating the 10 different songs, the error associated with
the high-frequency word mo, which appears 24 times in the sequence, was 0.25. However, by
moving all 24 occurrences of mo to the beginning of the 437-word sequence, the error asso-
ciated with mo dropped to 0.15. These results are in line with the well-known primacy effects
in memory tasks reported by Ebbinghaus (1913). They are also similar to those reported in
a study by Deliège (2001) that demonstrated improved memory performance for first-heard
cues in music-recognition tasks.

4.5. Comparisons with other models

4.5.1. Comparison with first-order Markov chain (TP) calculations
Other statistical learning mechanisms have been shown to be able to extract words from

sequences of syllables, and these mechanisms also apply to other domains (e.g., Christiansen
et al., 1998; Cleeremans & McClelland, 1991). In most existing models based on statistical
regularities, chunks and boundaries between chunks are detected by the variation of TPs.
For example, word boundaries fall where intersyllable TPs are significantly lower than the
preceding and following TPs.

For all 2-interval words in the primary set of children’s songs (Set 1), we computed the
TPs from the first interval to the second. If TRACX2’s errors for these words were closely
correlated with these TPs, it would be reasonable to claim that the mechanisms instantiated in
TRACX2 could have been achieved by simple statistical first-order Markov chain estimations.

To investigate that assertion, we computed the Pearson correlation coefficient, r, between
the TPs and the errors obtained with TRACX2 on the 84 2-interval words making up the
primary set of children’s songs (Set 1). Large errors (i.e., poor chunks) should correspond
to low TPs. However, this is not the case. The value of r was 0.13 (i.e., positive and close
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to 0). In short, errors calculated by TRACX2 for these words did not depend linearly on the
associated TPs.

These results have also been confirmed with analyses on 3-interval words, which corre-
spond to words comprising four tones. For these words, we replaced simple TPs by average
TPs. The Pearson correlation of the average TPs with the errors made by TRACX2 (see
Section 3.7. to see how errors on 3-interval words are calculated) on the 161 3-interval words
in the primary set of children’s songs was found to be 0.32.

In short, TRACX2’s errors seem to be capturing not only TPs, but also other types of
statistical regularities in the songs.

4.5.2. Comparison with PARSER
PARSER (Perruchet & Vinter, 1998, 2002) is a largely, if not completely, symbolic model

of syllable sequence parsing and chunking. A particularly clear description of this model can
be found in Perruchet and Vinter (1998). It does not maintain anything that is equivalent to
the internal representations of TRACX2, aside from what is stored explicitly in its Working
Store. For instance, it has no way of knowing that the 2-interval FR contour ay (12-note fall,
followed by a 12-note rise) should cluster with the much less “severe” FR contour ko (2-
note fall, followed by a 2-note rise), rather than with ya or ok, both RF sequences. In other
words, PARSER was not designed to cluster representations of its data, and hence there is no
clustering of musically similar 2-interval pairs.

4.5.3. Comparison with RAE
As mentioned above, an RAE is a special case of the more general TRACX2 architec-

ture. Given the simplicity of the RAE, it is interesting to contrast its behavior with the
results obtained with TRACX2, parameterized as described in this paper. With an RAE, the
projection of the points representing the 2-interval words on the first principal plane after 30
learning epochs is very different from the one obtained with TRACX2 as shown in Fig. 7.

We then looked at the correlation between the mean errors over all 84 2-interval words
for TRACX2 and RAE. This was 0.79. However, the means (of these mean errors) were for
TRACX2 and RAE 0.17 and 0.50, respectively. In other words, the overall errors-on-output
(i.e., the fit-to-data) produced by TRACX2 were three times better than those for RAE. (And
this difference held up for 3- and 4-interval words.)

We also calculated the correlation between the errors made by TRACX2 and the difference
“error RAE—error TRACX.” The value is –0.41 for 2-interval words and goes to –0.85 for
3-interval words and to –0.92 for 4-interval words. This means that when TRACX2’s error is
small (i.e., for familiar words), the difference with RAE is big, RAE errors being larger than
TRACX2 errors.

Chunking in TRACX2 and RAE works more or less in the same way. Words producing
large errors (nonfamiliar words) are basically the same for the two systems. This is also
the case for words with small errors. However, the differences between the errors made by
TRACX2 and those made by RAE increase as the words become less familiar to the two
systems. This could be explained as follows. When words are familiar, TRACX2 and RAE
work in a comparable manner. For familiar words on input, the left part of TRACX2’s input
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is mainly the internal representation of the first part of the word. But for RAE, regardless of
whether the words on input are familiar or not, it always puts their internal representation on
input on the next time step. For this reason, for nonfamiliar words, the principles of func-
tioning of the two systems are different. Consider an unfamiliar 3-interval word. RAE takes
as input the internal representation of the first two intervals, even if they do not constitute a
chunk. This will then produce a larger error on output than for TRACX2 because, in this case,
TRACX2 does not use the internal representation of a nonexisting chunk.

4.5.4. Comparison with SRN
Given its importance in similar studies (see French et al., 2011, for details), we ran a vanilla

SRN (Elman, 1990) on the primary set of children’s songs with 30 learning epochs and com-
pared the errors1 for each of the 2-interval pairs of this set with those produced by TRACX2.
Insofar as possible, we set the parameters of the SRN, such as its learning rate, momentum,
number of hidden units, Fahlman offset (Fahlman, 1988), number of learning epochs, and
its mean absolute error measure to be the same as those used by TRACX2. In spite of these
similarities, it is worth mentioning that the tasks of the SRN and TRACX2 are fundamen-
tally different—namely, the SRN tries to predict the upcoming interval and TRACX2 tries to
reproduce the input.

As for TRACX2 and RAE, we looked at the first two components of a PCA of the internal
representations of the SRN for the 84 2-interval words in Set 1 of the children’s songs. The
clusters of the contours of these words closely resembled those produced by RAE, in partic-
ular, with a great deal of overlap. This is not particularly surprising, given that the “context
units” at time t of an SRN are a copy of the hidden-unit activations of the network at time t–1,
which is the same mechanism used on input by the RAE.

Finally, we found a correlation of 0.31 between the errors generated by TRACX2 and
those produced by the SRN. The reason this correlation is not higher is because of the way
in which the 2-interval words are learned. This is illustrated by two relatively infrequent 2-
interval words, ay (four occurrences) and dv (five occurrences), compared to high-frequency
words, such as mm (61 occurrences), km (24 occurrences), or ok (17 occurrences). These
low-frequency pairs were close together in the training set (thus, rapid reinforcement during
learning) and had TPs of 1. This meant that for the SRN, ay and dv were among the best
learned words, whereas TRACX2, which relies on their frequency of occurrence rather than
their TPs, were among the most poorly learned words.

5. Study 2: The effect of prior learning on recognition performance of previously
unseen words

Can TRACX2 generalize its learned representations of musical chunks to new, unobserved
interval sequences? We will present the results of a number of simulations carried out by
TRACX2 (Fig. 8) and compare the performance of the model with other systems—namely,
first-order Markov chains (i.e., TPs only), PARSER, RAE, and an SRN. The study is com-
posed of two parts. First, we examined the effect of modifying the familiarization corpus and
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Fig. 8. The effect of prior learning for TRACX2, RAE, and an SRN on the recognition of words found in the Bach
test set but not in the training corpus (SEM error bars).

in a second set of simulations, we examined the effect of prior learning on three different
kinds of test items.

5.1. The effect of modifying the familiarization corpus

5.1.1. Method
We trained TRACX2, RAE, and an SRN on four different, but related training sets. These

were the primary set of children’s songs and three other sets in which the intervals of these
children’s songs were scrambled in different ways. For each network, we also included a fifth
simulation where there was no prior learning. After training the networks on these different
versions of the primary data set (and without training), we selected a set of 3-interval words
that did not occur in any of the training corpora, but that were found in the Bach sonata. We
called this set the “Bach test words.” Each of the following training/test procedures was run
20 times, each time reinitializing each network’s weights.

All networks were trained for 30 epochs (with the standard values of learning rate, momen-
tum, etc., see Section 3.1) on the primary corpus of children’s songs (“songs” in Fig. 8). We
then fixed the weights of the networks and presented the Bach test words to each network and
recorded the errors obtained.

To see the role played by the intervals themselves, independently of their order, we then
randomly permuted the intervals in each of the children’s songs (“within-song permute” in
Fig. 8), and, starting with newly initialized, random weights, trained the networks for 30
epochs on these scrambled children’s songs. We fixed the networks’ weights and tested their
recognition performance, as measured by errors on output, on the Bach test words.

We also created a third training corpus by randomly distributing all of the intervals across
all 10 of the children’s songs of the primary set (“global permute” in Fig. 8). This was
intended to test a possible, more general familiarity effect with intervals frequently encoun-
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tered in the children songs. After randomly reinitializing each network’s weights, we trained
them for 30 epochs on this corpus, fixed their weights, and tested each network’s recognition
performance on the Bach test words.

We then randomly chose intervals from the full set of 39 intervals and distributed these
intervals across all 10 of the children’s songs (“full random permute” in Fig. 8). This last
simulation was designed to test a possible learning effect on musical intervals, a kind of
by-product of the general learning mechanism used in neural networks. As before, we reini-
tialized all of the networks’ weights, trained them on this set, fixed their weights, and tested
their recognition performances on the Bach test words.

Finally, after once again reinitializing the networks’ weights, we tested each network on
the Bach test words with no prior training.

In each case, the length of each song (i.e., the number of intervals) was left unchanged.
We also ran these tests for the RAE and the vanilla SRN, as described above (Fig. 8).
We averaged our results over the 20 runs of the program for each of these training/test

scenarios. In all cases, we used the standard set of learning parameters for TRACX2, the
RAE, and the SRN.

5.1.2. Results
The results of the simulations are shown in Fig. 8.
It is interesting to note that for all three types of networks tested, it is the set of intervals in

the training set, regardless of their order, that accounts for the recognition advantage of the
words in the Bach sonata. This result is in agreement with a study (Tillmann & Bigand, 2001)
that demonstrated that the temporal order of chords in the context sequence did not affect the
harmonic priming effect on the final target chord.

5.2. The effect of prior learning on three different kinds of test items

5.2.1. Method
To further examine the effect of prior learning on previously unseen-word processing, and,

notably, the potential effect of proximity sensitivity, we investigated the response of TRACX2
to different kinds of words that it had never encountered during training on the children’s
songs. For this study, the network was trained on the primary corpus of children’s songs
(as described in Study 1), and then tested on a different set of materials that shared similar
structural features, but were new and had not been previously encountered by the network.
This approach mimics a general methodological approach used in music perception research,
that relies on new (i.e., previously unheard) experimental items to test listener’s music per-
ception (e.g., Deliège, 2001; Schellenberg et al., 2002; Marmel, Tillmann, & Delbé, 2010).
Creating specific experimental material that respects the same musical features as real-world
music allows for investigating listeners’ music perception in a controlled way, whether it
tests for interval and contour processing (e.g., Schellenberg et al., 2002), tonal function (e.g.,
Marmel et al., 2010), or specific musical patterns or prototype-like cues (e.g., Deliège, 2001).
In Deliège, 2001’s study, listeners were first exposed to a given musical material and then
tested for different items that were either old, new, or modified on different dimensions and to
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varying degrees, thereby providing evidence for listeners’ memory storage and its influence
on perception (see also work by Dowling, Kwak, & Andrews, 1995, 2001, 2014 testing short-
term memory). Here, we adapted a similar approach for TRACX2—namely, after a training
phase on a set of children songs, the model was tested with three types of new words that
did not belong to the set of children’s songs on which it was trained and were intentionally
constructed to test the proximity sensitivity of the network. Specifically, three types of new
words were created, notably words that were:

(i) far from all the words encountered during training,
(ii) close only to existing, but unfamiliar words,

(iii) close to very familiar words.

Each of these three types of unheard words should produce different error profiles—
namely, the first category of unheard words will produce the largest errors, the second type of
unheard words will sound somewhat familiar to TRACX2 and will, therefore, produce smaller
errors than the unheard words in the first category, and the third type, being close to familiar
words, will produce the lowest errors. The details of precisely what is meant by these three
categories of unheard words and the definition of far versus close are as follows.

We define the Chebyshev distance (Cheb) between two words as the largest distance, mea-
sured in semitones, between the corresponding intervals of the two words. Consider the new
word caf, which does not occur in the children’s song set. The closest word to caf in the chil-
dren’s corpus is jim. Between c (–10 semitones) and j (–3 semitones), there is a difference of
seven semitones; between a (–12) and i (–4), there are eight semitones, and between f (–7)
and m (0), there are seven semitones. Consequently, the Chebyshev distance between caf and
jim is 8, which we write as Cheb(caf, jim) = 8.

(i) When the unheard words are far from all the words encountered during training

If the Chebyshev distance between two 3-interval words was greater than 5, we considered
them to be “far apart.” We looked at TRACX2’s errors over a set of 50 invented words that
were far from all of the words in the primary training corpus. So, for example, TRACX2’s
error-on-output for caf was 0.45. Given that the errors for all of the 3-interval words in the
10 children songs in the primary corpus varied from 0.16 to 0.39 with an average of 0.22, an
error of 0.45 can be considered as rather large.

(ii) When the unheard words are only close to unfamiliar words

The unheard word, osf, for example, is close to the word orf (Cheb(osf, orf) = 1), which
exists in the training set. However, orf occurs only once in the training set and, as a result,
has an error-on-output of 0.26. This explains why the error on output of the very similar, but
unheard word osf is 0.26, which is slightly more than 1 SD (0.036) above the average error
value of 0.22 for all words in the training corpus. In other words, osf, a new word, is very
similar to orf, which exists in the training corpus but was not well learned because of its low
frequency.

(iii) When the unheard words were close to familiar words in the children songs
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Fig. 9. The effect of prior learning for TRACX2 on words of various distances from previously encountered
familiar or unfamiliar words in the training corpus.

Consider llm, a word that never occurs in the children’s songs, but is at a Chebyshev dis-
tance of 1 from lmm, and mlm in the training set. These two words occur 2 and 4 times,
respectively, in the children’s song set and have errors, 0.17 and 0.16, respectively, that are
well below the mean error for all existing words. As expected, the error on the new word, llm,
is low, with a value of 0.18.

We randomly generated three sets of 50 unheard words, corresponding to the above three
categories of unheard words:

• Fifty unheard words situated at a distance greater than 5 from all the words existing in
the children’s songs.

• Fifty unheard words situated at a distance of 1 from existing, unfamiliar words, that is,
words with an error that was greater than the mean error + 0.5 SD. In other words, an
error greater than 0.24 for TRACX2.

• Fifty unheard words situated at a distance of 1 from existing, familiar words, that is,
words with an error that was less than the mean error—0.5 SD. This translated as an
error less than 0.2 for TRACX2.

5.2.2. Results
The mean errors for these three categories of unheard words (Fig. 9) were, respectively,

0.30, 0.26, and 0.20 (F(2, 147) = 101.9, p<.001, ηp
2 = 0.58). A Tukey post-hoc analysis

showed that all pairs of means were significantly different from each other (for all pairs,
p<.001).
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5.3. Comparison with other models

5.3.1. First-order Markov models
In this framework, TPs can only be estimated based on the observed frequencies of words

present in the training set. For this reason, no generalization to new 2-interval words is pos-
sible. There is no straightforward means of estimating the corresponding TPs or of making
use of a proxy, as is done by TRACX2, based on the proximity between intervals, a property
that is not part of a simple first-order Markov model using TPs. The use of more sophis-
ticated Markov models (e.g., dynamic n-order Markov models, Cornelius, Shuttleworth, &
Taramonli, 2017) is, however, beyond the scope of this paper.

5.3.2. PARSER
Perruchet (personal communication) tested PARSER (Perruchet & Vinter, 1998, 2002) by

training it first on the primary set of children’s songs and then testing it on the Bach sonata.
He found no effect of prior learning on PARSER’s chunk-extraction performance on the Bach
sonata. Because PARSER is not equipped to handle distributed representations on input, it
has no way of applying what it has learned about one 3-interval word in the training set to
a similar, but never encountered word that appears in the test set. This is why there is no
advantage of having been exposed to the children’s songs prior to being tested on words in
the Bach sonata.

5.3.3. RAE
An RAE shows a prior-learning effect for unheard words that is very similar to the effect

for TRACX2. We tested this effect using the same paradigm we used for TRACX2 in 5.2.
The RAE was first trained on the primary set of children’s songs for 30 epochs. We created
three different sets of unheard words using the same procedure described in 5.2.1. We tested
these three categories of unheard words with the RAE to determine its error-on-output. The
mean errors for the three categories of unheard words were, respectively, 0.46, 0.42, 0.33
(F(2, 147) = 332, p<.001, ηp

2 = 0.82). The RAE, therefore, shows a similar prior-learning
effect as TRACX2.

5.3.4. SRN
An SRN shows also a prior-learning effect for unheard words that is very similar to the

effect for TRACX2. The SRN was tested in the same way as TRACX2 and RAE. The mean
errors for the three categories of unheard words were, respectively, 0.39, 0.28, and 0.13 (F(2,
147) = 69.2; p<.001, ηp

2 = 0.49).

5.4. Conclusion

In conclusion, TRACX2, RAE, and SRN showed a significant effect of prior learning on
the processing of new items that differed to various degrees from the items found in the
training set. The finding that both the first-order Markov model and PARSER could not sim-
ulate these differences suggests the necessity of distributed representations to encode input.
Further research will need to design new music material to be tested in perception experiments
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along this line in which errors-on-output of TRACX2, RAE, and SRN will be used to pre-
dict listeners’ performance in various recognition tests (e.g., lower errors predicting stronger
confusion and thus lower accuracy). A similar approach has been previously used for the sim-
ulation of short-term memory results with the tonal-structure network being able to simulate
participants’ performance differences between the standard melody and four experimental
conditions (i.e., exact transposition, tonal answer, atonal contour foil, random foil [Tillmann
et al., 2000]). The outcome of our simulations here could be tested with an implicit learning-
type experimental paradigm, notably an exposure phase followed by a test phase with targets
and different foil types, applied to tone sequence material differing in interval use (similarly to
the implicit learning experiment on 12-tone-music reported in Bigand & Poulin-Charronnat,
2006).

6. Study 3: TRACX2’s sensitivity to melodic contours

As previously reported in music cognition research, human listeners are not only sensitive
to the proximity of intervals (i.e., the distance between the corresponding intervals making
up two sequences of intervals), but also to melodic contours (i.e., the “shapes” of the two
sequences of intervals), even in infancy (e.g., Dowling, 1978; Trehub et al., 1985; Schellen-
berg, 1996). In this section, we will examine whether this sensitivity can be simulated with
TRACX2.

6.1. Method

6.1.1. Definition of a contour
To address this question, we need to consider a rather subtle distinction, that of the prox-

imity versus the contour of words. We have shown in Section 4.2 that TRACX2 is sensitive
to the proximity of simple, 2-interval words to the flat word mm. We have even argued, based
on our grouping of the various 2-interval words, RR, R = , RF, = F, FF, F = , FR, and = R,
and = = , that it might also be sensitive to contour information. In the following section, we
will tease apart the notions of proximity and contour and show that TRACX2 is sensitive, not
only to proximity information, but also to contour information as well.

To do this, we needed an operational definition of a contour. A contour can be simply
defined as the sequence of rises and falls in a particular sequence of intervals. The contour of
the word kmo, for instance, is (– = +, which is read as Falling-Flat-Rising). For 3-interval
words, there are, therefore, 27 different possible contours.

One way to detect a contour effect would be to examine the internal representations of
words of the same length. Those words belonging to the same contour should on average be
closer together than those belonging to different contours. But we have already shown that
TRACX2 is also sensitive to other factors, such as the proximity of high-frequency words,
and the location of the intervals inside a word (the trace of the final interval is stronger in
the internal representation, see Section 4.3). As a result, the study of contour effects can be
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Fig. 10. sgm and kom have the same mdist [4,4,0] asokm, but have different contours, (+,– = ) and (–,+, = ),
respectively.

biased by these other factors. To disentangle a potential contour effect from other effects, the
pairs of words to be compared need to be carefully chosen.

Consider, for instance, the two words sgm and okm. They both have the same contour—
namely, (+ – = ). They are composed of the intervals (6 –6 0) for sgm and (2 –2 0) for okm,
which means that the Chebyshev distance (i.e., the largest distance between the two words
across dimensions) between them is 4. However, the order of the intervals in the word mat-
ters, so we need to define a multidimensional distance, which we call mdist, between pairs
of words. mdist is defined as the triplet of the absolute differences between the three inter-
vals that compose the words. In other words, mdist(sgm, okm) = [4 4 0]. We now look at a
3-interval word whose mdist from okm is also [4 4 0] but that belongs to another contour, for
instance, kom [–2,2,0] (Fig. 10). If TRACX2 is, indeed, sensitive to contour information, we
would expect the distance between the internal representations of okm and sgm, two words
that belong to the same contour, to be smaller than the distance between the internal repre-
sentations of okm and kom, that belong to different contours. This does, in fact, turn out to be
the case. To show that this is true in general, we proceeded as follows:

• One thousand 3-interval words were randomly generated. In order to keep these words
“plausible,” no interval above 12 or below –12 was considered and no sequence of two
adjacent intervals with the same sign and adding to more than 12 or less than –12 were
possible. This means there were no differences of consecutive notes going beyond one
octave. For example, the following 3-interval words were not included: (0 13 5), (4 1
–13), (2 11 6), (5 –5 –8). But note that (11, 1, 11) would not have been rejected. This
was done to keep the words “singable,” or at least to avoid overly unusual melodic
words.

• For each pair of words, we calculated the mdist between them and we noted the contour
to which each word belonged.

• For a given mdist [a, b, c], all pairs of words with an mdist of [a,b,c] were selected.
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• Among those pairs, some shared the same contour. These were put into a subset S1.
Pairs of words that did not share the same contour were put into a second set, S2.

• We then calculated the average cityblock distance between the representations of each
pair belonging to S1. We did the same for each pair of words in S2.

• We compared the S1 distances to the S2 distances by means of an ANOVA.

6.2. Results

In the 10 children songs in the primary familiarization corpus, the maximum cityblock
distance between the internal representations of two 3-interval words is 44.4 and the average
distance is 17.5. If we restrict ourselves to the pairs of 3-interval words that share the same
contour, the average distance drops to 9.2. This average is computed on 165 pairs of words.
(This was confirmed with the second set of children’s songs where the distance dropped from
15.2 to 7.6.) This decrease would seem to reveal a contour effect. But the effect is not entirely
convincing until the interval proximity between the words has been fully controlled for, as
explained above.

The simulation with 1000 randomly generated 3-words made it possible to entirely elimi-
nate the proximity effect. For an mdist of [2, 2, 2], for instance, we found 187 pairs of words
with the same contour and 146 pairs with different contours. For the pairs of words belonging
to the same contour, the average cityblock distance between their internal representations was
6.6, compared to 7.7 for the other 146 pairs. This difference is highly significant (p< .001),
as revealed by an ANOVA.

We obtained similar results with other mdist values. We took all the triplets of mdist from
[0, 0, 0] to [6, 6, 6]. This gave the expected result for 98% of the triplets. An ANOVA showed
that differences were significant (p<.05 with a Bonferroni correction) for 79% of all cases.
Those results were confirmed on the second set of children songs (Set 2) where differences of
all the triplets were in the expected direction (99%), and 96% of them were significant (p<.05
with Bonferroni correction). As expected, without training, there was no contour effect (2%
of significant differences with p<.05 with Bonferroni correction).

6.3. Comparison with other models

6.3.1. First-order Markov-chain models
To the best of our knowledge, there is no explanation of the contour effect using first-order

Markov-chain models. These models have no internal representations of the data they are
processing and, as a result, no comparison is possible with the above results for TRACX2.

6.3.2. PARSER
PARSER does not construct internal representations of the data that are processed and no

comparison is, therefore, possible with the above results for TRACX2.

6.3.3. RAE
With RAE, we ran a simulation similar to the one carried out with TRACX2. One thousand

randomly 3-words were randomly generated, and all the different triplets of mdist, from [0,
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0, 0] to [6, 6, 6], were considered. This gave the expected result for 97% of the triplets. An
ANOVA showed that differences were significant (p<.05 with a Bonferroni correction) for
91% of all cases. In other words, RAE was as contour sensitive as TRACX2.

6.3.4. SRN
An SRN also produces hidden-unit representations of the words in the training set, but the

representations that it produces are considerably different from those produced by TRACX2,
as explained in Section Section 4.5.4. We ran the present contour-proximity simulation with
the SRN and did not observe a contour effect. The differences were significant (p<.05 with a
Bonferroni correction) in the expected direction for less than 1% of all the cases. This result
confirms the one reported in Section 4.5.4, where we already observed that the SRN clusters
were far from the relatively disjoint clusters produced by TRACX2.

7. Study 4: Better recognition of the end of motives

Saffran et al. (1999) showed that participants are better able to recognize the end of melodic
words than their beginning. Their results replicate a similar finding with speech stimuli (Saf-
fran, Newport, & Aslin, 1996b) and suggest that the ends of words are learned first, whether
the words are created from syllables or tones. Saffran and collaborators concluded, based on
their results, that the transitional-probability learning mechanism that was posited to drive
syllable-stream segmentation in infants (e.g., Saffran et al., 1996a; Aslin et al., 1998) could
be the same learning mechanism as the one underlying tonal domains.

In this work, they began by defining a set of four tri-syllabic words (abc, def, ghi, jkl) made
up of 12 distinct syllables (a, b, c, d, e, f, g, h, i, j, k, l). They then randomly concatenated these
words with no immediate repetitions into a 2-min familiarization sequence of 360 words. By
means of a head-turn preference test, they compared infants’ recognition performance to the
original words versus “part-words,” defined as the final syllable of one word followed by
the first two syllables of another word. In general, however, the distinction between words
and part-words in melody perception is not germane because sequences taken from real, pre-
existing melodies do not consist of the concatenation of a predefined set of “tone-words” or
“interval-words.” That said, in Saffran et al. (1999), tone-sequences were constructed, exactly
mimicking the syllable-sequence construction in Saffran et al. (1996b). With respect to pre-
existing melodies, they say, “The tone words were not constructed in accordance with the
rules of standard musical composition and did not resemble any paradigmatic melodic frag-
ments.” After familiarization on this tone-sequence, infants were then tested for word/part-
word discrimination as they had been in Saffran et al. (1996b).

We will now examine how well TRACX2 reproduces this asymmetry in the recognition of
the “melodic” words used by Saffran et al. (1999). This study is divided into three separate
parts.
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7.1. Simulating the results of Saffran et al. (1999)

7.1.1. Method
We began by attempting to reproduce the results observed in Experiment 3 of Saffran et al.

(1999) human infant behavioral study. These authors constructed a tone sequence out of 11
pure tones in the same octave. The tones were combined into groups of three, thereby form-
ing six “tone words.” The tone words were: ADB, DFE. GG#A. FCF#, D#ED, and CC#D.
The tone words were randomly concatenated with no immediate word repetition or acoustic
markers, to create six different blocks, each containing 18 tone words. These blocks were then
concatenated to produce a 7-min continuous tone stream. There was no attempt to make tone
words that resembled standard musical composition. In their analysis, they define a “part-
word” as being a three-tone sequence comprised of the two initial tones from one word plus
a new third tone or the two final tones of a word plus a new initial tone.

All of our simulations were based, not on tone sequences, as in Saffran et al. (1999), but,
rather, on interval sequences. Consequently, we replaced the 3-note words (and part-words) by
2-interval words (and part-words). Saffran et al. (1999, p. 40) discussed at some length “the
harmonic relations (intervals)” in their tone sequences. They showed the number of words
containing particular intervals and how they differ. In other words, the authors were aware of
potential confounds created by the overlapping intervals contained in their words.

As in Saffran et al., we created a training sequence by concatenating these 2-interval words.
The problem we encountered, however, was that when we translated the L1 3-note words
constructed by Saffran et al., into 2-interval words, this gave: fv, un, hs, nl, nn, and pl. And
their 3-note part-words became our 2-interval part-words: gv, pn, ls, nq, nw, and pn. Clearly,
the intervals n and l are overrepresented in these L1-words, with four repetitions for n and
two repetitions for l. Further, pn was both an end-of-word and a beginning-of-word part-
word. Saffran et al. (p. 41) write “…we cannot rule out the possibility that interval information
contributed to the tone segmentation process.” Our simulations indeed confirm the importance
of the interval information in the observed result patterns.

We, nonetheless, used these 2-interval words to produce a sequence as described in Saffran
et al. and tested the errors produced when we tested the trained network on end-of-word (Xb)
versus beginning-of-word (aX) part-words. The results of our simulations below suggest that
interval information in their tone sequence may have indeed been a confound in the Saffran
et al. experiments.

7.1.2. Results
As we pointed out above, pn can be a part-word that functions as either an end-of-word

(Xb) or a beginning-of-word (aX) part-word. A first analysis considered it as an Xb part-
word. After training TRACX2 for 100 epochs on the interval sequence created as described
above, we considered the average of the errors-on-output of the three Xb part-words, {gv, pn,
ls} and the two aX part-words, {nq, nw}. We averaged these errors over 20 runs of TRACX2
with a new interval sequence on each run. A paired t-test showed that the Xb errors were
significantly smaller than the aX errors (t(19) = –2.38, p < .03, Cohen’s d = –0.55, BF10 >

2.2). In other words, TRACX2 reproduced the end-of-word advantage shown in Saffran et al.
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(1999) using a translation of the Saffran et al.’s 3-tone words into 2-interval words when pn
is an Xb part-word.

However, because pn can be either an Xb or an aX, part-word, we removed it from the list
of Xb part-words and made it an aX part-word. The new sets of part-words were, therefore,
Xb = {gv, ls} and aX = {pn, nq, nw}. When this was done and we recalculated the average
errors for the two types of partwords, the end-of-word advantage of Xb part-words over aX
part-words disappears (p = .29). In other words, when pn was switched to an aX part-word,
the significantly smaller errors of Xb part-words over aX part-words disappeared.

These seemingly contradictory results can reasonably be explained by the overabundance
of the interval n in the training sequence. The fact that 25% of all intervals in the training
set are n means that the error for any part-word containing n will necessarily be low. Thus, if
pn is included in the Xb part-words, {gv, pn, ls}, its presence decreases the overall error for
these part-words. Hence, the appearance of an end-of-word advantage. On the other hand, if
pn is included among the aX part-words, {nq, nw, pn}, this significantly decreases the overall
error of these part-words, thereby masking any potential end-of-word advantage of the Xb
part-words.

In short, converting the sequence of 3-tone words used by Saffran et al. into an equivalent
sequence of 2-interval words does not allow TRACX2 to systematically simulate their end-
of-word part-word recognition advantage.

7.2. Overcoming the problem of interval repetition

7.2.1. Method
Because of the potential problem of interval repetitions in our interval encodings of Saf-

fran et al.’s tone words, we created an interval-word sequence that satisfied the Saffran et al.
sequence-creation methodology for tones, but did not have the interval-repetition problem
described above. The 2-interval words with which we created the training sequence were: fv,
un, hs, dy, mt, pl, and the associated 2-interval part-words on which we tested the network
were: gv, wn, rs, db, mo, pq. We created a training sequence as in Saffran et al. (1999) and ran
the program 20 times with 100 learning epochs, each time on a different training sequence
constructed from the words. We compared errors on Xb part-words (i.e., {gv, wn, rs}) with
those of the aX part-words (i.e., {db, mo, pq}).2

7.2.2. Results
We averaged over the three Xb words and over the three aX words over 20 runs. A paired

t-test showed that the Xb errors were significantly smaller than the aX errors (t(19) = –6.9, p
< .001, Cohen’s d = –1.55, BF10 > 100). Saffran et al. reported that 64% of the time Xb part-
words were recognized better than aX partwords. For TRACX2 in this case, this percentage
was also 64%. In other words, with a sequence of intervals created with words that avoided the
interval-repetition and pn part-word problem,TRACX2 reproduced the end-of-word advan-
tage shown in Saffran et al. (1999). When trained on the above sequence, TRACX2 was,
indeed, sensitive to the end-of-word advantage reported by Saffran et al. (1999). As it might
be argued that this result might be overly dependent on the choice of the words making up
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the training sequence and the part-words, we turned to a third analysis based on TRACX2’s
internal representations to demonstrate and explain this advantage.

7.3. Analyzing the end-of-word-advantage using the internal representations of the
3-interval words in the children songs

7.3.1. Method
As the study of the internal representations built by TRACX2 revealed a similar bias toward

the end of the words (see Section 2.2.2), we decided to address, in a third set of simulations,
the end-of-word-advantage issue through the analysis of the internal representations of the
3-interval words in the children songs. For each 3-interval word—say ayj—we compared the
internal representation of the full word (ayi) to the internal representations of its two first
intervals, ay, and of its last two intervals, yj. The end-of-word preference revealed by Saffran
et al. implies that the distance between the representation of the 2-interval word (yj) at the
end of the full word and the representation of the full word, ayj, should be smaller than the
corresponding distance between the representation of the 2-interval word, ay, at the begin-
ning of the full word and the representation of the full word. In other words, Dist(H(ayj),
H(yj)) < Dist(H(ayj), H(ay)), where H is the hidden-unit representation of the input vector
of TRACX2 and Dist is the cityblock distance between two vectors. Even though other fac-
tors impact the way the internal representations are elaborated (frequency of occurrences,
proximity, contours), the differences should emerge from the comparison of all the possible
3-interval words.

7.3.2. Results
For each of the 161 3-interval words found in the children’s songs, we calculated the city-

block distances between its internal representation and each of the two subwords constituted
by the first two and the last two intervals of the word. The average distance for the subword
beginning the 3-interval words was 0.76 (0.77 for the second set of children songs) and for the
subword ending the 3-interval word was 0.58 (0.60 for the second set of children songs). The
effect was, in fact, observed on 90% of all 3-interval words (93% for the second set of songs).
The direction of the mean difference was as announced by Saffran et al.’s observations.

7.4. Discussion

The subword asymmetry at the level of TRACX2’s internal representations emerges nat-
urally from the architecture of TRACX2, specifically from the fact that word accretion in
TRACX2 involves adding individual items (whether they are syllables, images, or intervals)
to the RHS of the input. Once again, consider the word ayj. The representation of the word
is built in a hierarchical way. The two intervals, ay, are first chunked and the network’s rep-
resentation of the chunk, H(ay) is encapsulated in the LHS of the input. This means that the
individual interval, a, making up ay has “disappeared” into the chunk H(ay). Now, consider
the subword, yj. When y and j are on input, its internal representation, H(vj), will be closer to
H(ayj) than H(ay) will be to H(ayj) because for both ayj and yj, the final interval, j, remains
explicitly on the RHS of the input, whereas ayj’s initial interval, a, has been subsumed into
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H(ay). This explains the smaller distance between H(ayj) and H(yi) compared to H(ayj) and
H(ay).

In other words, we do not need to invoke TPs or an anchor role played by the last note, as
proposed by Saffran et al., to explain the end-of-word advantage effect. The chunk-accretion
mechanism used by TRACX2 in which new items are added to the RHS of the input tends
to better preserve the end of the chunks than their beginning, leading to the end-of-word
advantage.

7.5. Comparison with other models

7.5.1. First-order Markov-chain models
Saffran et al. (1999) explanation of their results is in terms of TPs (of notes) which is the

underlying mechanism of a first-order Markov-chain model explanation. In our simulation,
their explanation would require applying TPs to intervals rather than notes.

7.5.2. PARSER
When segmenting streams composed of predefined words as in Saffran et al. (1996a,b;

1999), PARSER, perhaps somewhat surprisingly, does not find part-words or, at least, only
finds them extremely rarely (Perruchet, personal communication). For this reason, PARSER
cannot be used to detect the end-of-word part-word advantage reported in Saffran et al. (1999).

7.5.3. RAE
We averaged over the three Xb words and over the three aX words over 20 runs using the

sequence described in Section 7.2. A paired t-test showed that the Xb errors were signifi-
cantly smaller than the aX errors (t(19) = –6.6, p < .001, Cohen’s d = –1.48, BF10 > 100).
Saffran et al. (1999) reported that 64% of the time Xb part-words were recognized better than
aX partwords. This compared to 72% for RAE. In other words, when trained on the above
sequence, RAE, like TRACX2, was, indeed, sensitive to the end-of-word advantage reported
by Saffran et al. (1999).

The analysis of the RAE internal representations of the 3-interval words in the children
songs made it also possible to reproduce the Saffran et al. end-of-word advantage found
in Section 7.3. For each of the 161 3-interval words found in the songs, we calculated the
cityblock distances between its internal representation and the two subwords constituted by
the first two and the last two intervals. The average distance for the subword beginning the
3-interval words was 0.53 (0.77 for the second set of children songs) and for the subword
ending the 3-interval word was 0.37 (0.60 for the second set of children songs).

7.5.4. SRN
The SRN also reproduced the Saffran et al. end-of-word advantage when run on sequences

constructed from the words, fv, un, hs, dy, mt, pl, and tested on the two sets of part-words,
Xb = {gv, wn, rs}, and aX = {db, mo, pq} (see Section 7.2). The effect with the SRN was
far more pronounced than for TRACX2. Over 20 runs, Xb part-words were recognized better
than aX part-words 80% of the time, compared to 64% for both Saffran et al. (1999) and for
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TRACX2. A paired t-test showed that the Xb errors were significantly smaller than the aX
errors (t(19) = –68.1, p < .001, Cohen’s d: –15.2, and a BF10 > 100).

We also ran for the SRN the simulation described in Section 7.3, in spite of the fact that the
internal representation generated by the SRN are substantially different from those generated
by TRACX2. The average distance for the subword beginning the 3-interval words was 0.11
(0.08 for the second set of children songs) and for the subword ending the 3-interval word
was 0.04 (0.06 for the second set of children songs).

These simulations would also seem to support an end-of-word advantage.

8. General discussion

8.1. Overarching issues

The starting point for our work was TRACX (French et al., 2011) and TRACX2 (French
& Cottrell, 2014; French & Mareschal, 2017; Mareschal & French, 2017), which have been
used to successfully simulate a wide range of sequence segmentation and chunking phenom-
ena from both the infant and adult literature on sequential verbal and visual materials. Our
goal was to extend the use of this neural-network architecture in an attempt to capture the
segmentation and chunking of short melodic sequences.

Even if the model was initially designed to simulate syllable-based word perception (where
there exists a clear distinction between words and nonwords), it does not include a mechanism
that makes a clear-cut difference between words and nonwords. Indeed, the chunking mecha-
nism modeled by both TRACX and TRACX2 makes it possible to build segments (referred to
as “words”) of different strengths (measured by their errors-on-output). This made it appeal-
ing for simulation in a domain where a clear word/nonword distinction does not exist. Musical
sequences, in particular melodies, are not built out of a pre-existing set of words out of which
a melody is built. The boundary between previously heard words and unheard words with
very similar motives is decidedly blurry.

8.2. Summary of TRACX2’s contributions to melody perception

The modeling of melody perception reported in this paper was carried out, not with the aim
of developing a full model of music perception, but rather, to suggest that the type of mecha-
nism implemented in the TRACX models—namely, memory-based segmentation and chunk-
ing coupled with the reutilization of the internal representations of the detected chunks—may
be a general cognitive mechanism underlying segmentation and chunking in vision, language,
and music perception.

We have shown that phenomena observed in simple human melody perception and learn-
ing can be simulated by means of a recursive autoencoder neural network. It is crucial to
note that our goal was not simply to devise an efficient algorithm or network to detect
repeated sequences in a musical piece. That is best left to engineers. The Long Short-
Term Memory Model (LSTM, Hochreiter & Schmidhuber, 1997) and other more sophis-
ticated approaches, such as GPT-3 (Heaven, 2020), would clearly outperform TRACX2
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in a music information retrieval task. Rather, our goal was to develop a cognitively plau-
sible, emergent model of melodic sequence perception and melodic pattern acquisition.
TRACX2 takes an unsupervised approach with no explicit rules or prior musical knowl-
edge built into it (i.e., it does not incorporate information from music theory or empirical
music perception data). Initially, all the connection weights in the network are small ran-
dom numbers centered around 0. During learning, no external supervisor is used to train the
connection weights and no explicit rules are applied. Segmentation and chunking emerge
gradually. Internal representations of the input emerge from this bottom-up learning, and
these representations then influence the perception of subsequent melodic sequences, thus
simulating the cognitive top-down influences emerging from learned information. Previ-
ous simulations with TRACX2 have shown that these mechanisms can simulate human
data for verbal and visual sequence learning, prediction, and perception. Here, we extend
these simulations to musical material, thus providing converging evidence for TRACX2
as a cognitively plausible model that parsimoniously simulates data across modalities and
materials.

The simulations presented here based on the mechanisms instantiated in TRACX2 provide
insight into the way humans might detect and extract regularities from music and then use
this acquired knowledge for perception, prediction, and memory.

Among the phenomena that TRACX2 is able to simulate in a qualitatively accurate and
psychologically plausible manner are:

– exposure to simple musical patterns on the ability to subsequently learn more complex
patterns, even if these patterns have not been encountered previously;

– the ability to learn a representation of melodic words that is sensitive to their contour;
– the higher sensitivity of the system to the ends of motives, which are better recognized

and memorized than their beginnings.

The present simulations used the implementation of TRACX2, as reported in French and
Cottrell (2014) and Mareschal and French (2017), with the only differences being (i) the
type of input encoding used (ordinal encoding rather than one-hot encoding) and the use of
intervals rather than notes, (ii) an error calculation that averages the errors for each of the con-
secutive pairs of intervals making up the word, and (iii) a modified ReLu squashing function,
instead of the standard tanh function. For the work reported here, we focus on relative pitch
intervals as a simplifying assumption. Regarding melody perception, previous music cogni-
tion research has indeed shown that the perceptually relevant information is the relative pitch
information and the emerging contour information, rather than the absolute pitch information
(i.e., the encoding of the pitch of each individual element).

One of the key contributions of our paper is its demonstration of the necessity of “ordi-
nal” encoding of the inputs instead of the one-hot encoding previously used by TRACX and
TRACX2. Aside from the obvious problem of not encoding the amount of rising or falling
of intervals (nor its size) with one-hot encoding, with ordinal encoding TRACX2’s internal
representations are richer in terms of the amount of information they store. When ordinal rep-
resentations are used on input, the network’s internal representations maintain a trace of the
intervals making up words that it has encountered.
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The simulations reported in Section 5 demonstrate the positive impact of early exposure to
simple melodies on subsequent learning of more complex musical patterns. Our simulations
showed that 2-interval words in a Bach sonata that did not appear anywhere in the training set
of children’s songs were, nonetheless, more easily perceived (i.e., had lower errors on output)
when the network had been previously trained on children songs. This effect was also con-
firmed for another piece of “classical” music, a Chopin fantasy (simulations not reported).
Additional simulations on words never heard by the system show the existence of an inheri-
tance of familiarity by proximity that could explain the effect of exposure to melodies. The
improved musical abilities of children with enhanced early exposure to music have been
shown previously with music listening and musical activities (e.g., Hannon & Trainor, 2007;
Gerry, Unrau, & Trainor, 2012). This enhanced early exposure has also been shown, more
recently, to be the case in visual statistical learning (Bertels et al., 2022). This enhanced early
exposure has also been shown, morerecently, to be the case in visual statistical learning (Ber-
tels et al., 2022). This could also be seen as an example of network training that “starts small”
(Elman, 1993) or of “incremental novelty exposure” during training (Alhama & Zuidema,
2018).

When examining TRACX2’s internal representations after learning on a set of children’s
songs, we have also shown that the model is, indeed, sensitive to contour effects. To show
this, we were able to factor out the influence of proximity, which is a confound in showing
contour effects.

And finally, we have shown that TRACX2 simulates the end-of-word recognition advantage
that was shown in Saffran et al. (1999). The conclusions drawn from these simulations were
based both on error data from test sequences that we created according to the Saffran et al.
word/part-word criteria, and, most importantly, the examination of the internal representations
of the network.

Comparisons with other models showed that both first-order Markov chains and PARSER,
which are both symbolic models, cannot reproduce all the results established with TRACX2.
In particular, these two models do not generalize to unheard music. The SRN is substantially
different from TRACX2 in both its architecture and its objective of predicting upcoming items
in a sequence. We have shown that this leads to lower sensitivity to contours. This is arguably
due to the fact that the SRN’s prediction does not require explicit chunking of subsequences
in the input stream. The comparison with RAE is more instructive. Indeed, TRACX2 and
RAE differ only in how they chunk information. The chunking mechanism implemented in
TRACX2 allows it to rapidly form distinct groups of its internal representations, which is not
the case for RAE. Nonetheless, the performance of TRACX2 and RAE is similar, although
not identical, on tasks involving familiarity judgments, priming effects, as well as end-of-
word and contour effects. This is not surprising when only 2-interval words are considered.
However, differences between the two systems appear on longer words where the chunking
mechanism used by TRACX2 impacts the internal representations of those words (see Sec-
tion 4.5.3). For these longer words, unheard-word familiarity is different for the two systems.
Finally, the fit to real data with TRACX2 is better than for RAE, something that could be
attributed to TRACX2’s more sophisticated chunking mechanism. A more complete under-
standing of the differences between the two models will require additional studies. Interested
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readers are encouraged to contact the Corresponding Author to obtain the Matlab or Python
code for TRACX2 and the familiarization songs.

8.3. Limits of the model and future research

8.3.1. Simplifications
As with any attempt to model a complex human ability, in this case, melody perception,

there are limitations to what the TRACX2 model can do. Our simulations have only repro-
duced some well-known features of some simple elements of music perception. The levels of
melodic-word familiarity, as measured by TRACX2’s errors, still need to be confirmed with
new experimental data in future research. Further, the basic chunking mechanism of TRACX2
does not allow it to identify “singular motives,” that is, melodic words that are not repetitive,
but, rather, stand out to human listeners because they are very different from what has been
previously heard. This suggests that perhaps other basic (predictive) mechanisms, that is,
mechanisms more focused on the anticipation of what is coming—need to be integrated into
TRACX2.

Our results were established on a simplified version of existing melodies. The next chal-
lenge for TRACX2 will be to use more complex musical information. In particular, informa-
tion about the duration of the notes making up the intervals needs to be encoded in the input
patterns. In our present simulations, half-notes, quarter-notes, and eighth-notes, for instance,
are not distinguished. Likewise, timbre, tonal-harmonic information (including chords), or
even, pauses, were not part of the input encoding to TRACX2. One of the reasons that we
felt that children’s songs were an appropriate testbed for the model was because these songs
can be recognized even without durational patterns (e.g., Devergie, Grimault, Tillmann, &
Berthommier, 2010). Finally, the model does not take into account phenomena, such as the
role of attention, the musical culture of the listener, or memory-refresh mechanisms.

8.3.2. Nonadjacent dependencies
TRACX2’s chunking mechanism relies heavily on the sequential presentation of input data.

Chunks are used only on the LHS of the input and, at least in the current instantiation of the
model, the RHS can never contain a chunk, only an interval. This constrains the manner in
which a chunk can be built: syllables, images, or intervals must be adjacent and chunks are
formed by progressive accretion of single intervals and never already formed chunks identi-
fied in the input stream. Nonadjacent dependencies, where they might occur, are not chunked
explicitly by TRACX2 in the same way that adjacent dependencies are. However, we have
shown in Section 4.3 that, by means of a multiple correlational analysis of the network’s
internal representations, within long words nonadjacent dependencies are, indeed, captured
by TRACX2.

Further, there are no attentional mechanisms in TRACX2 that would allow it to “focus”
attention on certain intervals (e.g., m) or sequences of intervals, making them easier to remem-
ber or faster to learn, or to highlight nonadjacent dependencies (e.g., Creel, Newport, & Aslin,
2004).
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8.3.3. Future work
The TRACX2 model is, admittedly, just a starting point in the computational connection-

ist modeling of melody perception, but it provides a basis to generate new predictions for
melody perception that then can be tested in targeted behavioral studies, including cross-
cultural experiments. Experiments will need to be designed to compare melodic expectations
with the results observed with TRACX2, to better understand the impact of the distribution of
motives in songs, on how they are recognized, to assess the impact of proximity of contours
on short-term memory, and to compare our results with those of other models of melodic
perception and expectancy formation.

It is clear that purely bottom-up models will not be able to capture the full range of human
music perception. Ultimately, modeling melody perception and adult music perception will
necessarily involve an interaction between bottom-up learning (based on sensory input) and
top-down control or predictions, such as influences based on prior acquired knowledge, which
can remain implicit, contain explicit rules, and involve attention.

9. Conclusions

Our simulations suggest that the segmentation-and-chunking mechanism implemented in
TRACX2 provides a plausible means of explaining some of the basic mechanisms of early
music learning and perception. It combines a purely bottom-up approach with an emer-
gent top-down mechanism—namely, chunk-formation and the subsequent influence of these
chunks on later perception. We believe that something like these learning and representational
mechanisms could be used by a cognitive system to segment and chunk musical sequences
during early music learning.

In addition, our present findings, taken together with previous research (French et al., 2011;
Mareschal & French, 2017), suggest that the recursive autoencoder architecture implemented
in TRACX2 could be a relatively domain-general mechanism, at least, insofar as it applies to
domains beyond word segmentation and chunking (Frost, Armstrong, Siegelman, & Chris-
tiansen, 2015). While the results presented in this paper have only scratched the surface of
music perception, we believe that it is a first, fundamental step in the endeavor to understand
the general mechanisms underlying human sequence processing.

To conclude, aside from the advantage of parsimony, the possibility of the existence of com-
mon mechanisms to explain linguistic, image, and musical perception should not be underes-
timated. We believe that the underlying principles on which recursive autoencoders are based
could lead to new predictions, new comparisons, better understanding, and further insights
into the mechanisms of perception and learning.

Notes

1 To calculate the error produced by an SRN for a particular word means setting the context
units to 0 and sequentially inputting the items making up the word to the SRN. Setting
the context units to 0 is justified because of the distribution of intervals in the children’s
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songs. Because the ascending (+) intervals almost exactly balanced out the descending
(–) intervals in the training corpus (Fig. 5a), it is reasonable to start with an activation
in the context units of 0. The output error is then the average of the prediction errors
associated with each of the items making up the word.

2 Unlike Saffran et al., we did not create a second sequence made from the part-words of
the first. We created a single sequence and tested the two types of part-words from that
sequence.
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