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Learning Habits: Does Overtraining Lead to Resistance 
to New Learning?
James R. Schmidt*,†, Jan De Houwer† and Agnes Moors†,‡,§

We explore the development of habitual responding within the colour-word contingency learning paradigm, 
in which participants respond to the colour of neutral words. Each word is most often presented in one 
colour. Learning is indicated by faster responses to the colour when the word is presented in the expected 
rather than in the unexpected colour. In Experiment 1, participants took part in two sessions, separated 
by one day. Critically, one set of words was trained across both days, and other new sets of words were 
introduced at various time points. Overall performance was faster on trials with overtrained words. 
Additionally, contingency effects were larger for overtrained words than for words introduced on Day 2. 
Removing the contingency had a similar impact on the learning effect for overtrained and new words. 
However, during a counterconditioning phase, where the words were made predictive of new colours, 
the previous contingency continued to influence performance for overtrained words but not for more 
recently introduced words. Relatedly, the new contingency was not acquired for the overtrained words. 
The reverse pattern was observed for recently-introduced words, with the newly-introduced contingency 
rapidly acquired and the influence of the old contingency quickly extinguished. In Experiments 2 and 3, 
however, both new and old learning effects were observed for both overtrained and recently-acquired 
contingencies. The net results suggest that while contingency learning effects are highly pliable during 
initial and subsequent learning, early-acquired contingency knowledge is maintained after removal of the 
contingency. Implications for models of learning are discussed.
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Introduction
For any intelligent organism to be able to understand and 
interact effectively with its environment, it is necessary 
to learn the regularities between events and outcomes 
(Allan, 2005; Beckers, De Houwer, & Matute, 2007; Shanks, 
2010). Knowledge of the meaning of words, the tastes of 
foods, and the likely results of our actions are all built on 
this contingency learning backbone. These regularities in 
the environment shape the behavioural repertoire of the 
organism. The present paper explores how contingency 
learning also helps to shape automatized or default 
responding to a stimulus. In particular, we ask how quickly 
this responding becomes stable and resistant to changes 
in contingencies, and we discuss potential relations to 
habit formation.

One useful paradigm for studying contingency learning 
is the colour-word contingency learning paradigm (Schmidt, 
Crump, Cheesman, & Besner, 2007; for related paradigms, 
see Carlson & Flowers, 1996; Levin & Tzelgov, 2016; 
Lewicki, 1985, 1986; Miller, 1987; Musen & Squire, 1993; 
Schmidt & De Houwer, 2012b; for a review, see MacLeod, 
2019). In the typical version of this paradigm, participants 
respond to the print colour of words (or the reverse; Forrin 
& MacLeod, 2017) with a key press (for verbal variants, see 
Atalay & Misirlisoy, 2012; Forrin & MacLeod, 2017). Each 
word is presented most often in one colour (e.g., “find” 
most often in purple, “help” most often in orange, etc.). 
Learning of the word-response contingencies is indicated 
by faster and more accurate responses to high contingency 
trials, where the word is presented in its most frequent 
colour (e.g., “find” in purple), relative to low contingency 
trials, where the word is presented in an infrequent 
colour (e.g., “find” in orange). One useful feature of this 
paradigm is the robustness of the effect, with nearly 100% 
of participants showing a positive contingency effect with 
very short experiments (e.g., 5–10 minutes).

In previous work, it has been observed that the colour-
word contingency learning effect appears almost instantly 
after the start of the task (Schmidt et al., 2007; Schmidt 
& De Houwer, 2012c, 2016b; Schmidt, De Houwer, & 
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Besner, 2010; O. Y.-H. Lin & MacLeod, 2018). Within the 
very first block of trials, the contingency effect is typically 
already robust, even with blocks as small as 18 trials. 
Similarly quick acquisition is observed in other, related 
implicit learning paradigms (e.g., Lewicki, 1985; Nissen & 
Bullemer, 1987; Schmidt & De Houwer, 2012a). There is, 
in addition, a small but significant gradual increase in the 
contingency effect with increasing practice (O. Y.-H. Lin & 
MacLeod, 2018; Schmidt & De Houwer, 2016b), indicating 
that there is a cumulative learning effect (i.e., continued 
strengthening of learning over time).

Interestingly, work has also indicated that when the 
contingency is removed from the experiment (i.e., after 
some blocks of experiencing the contingency), the 
contingency effect very rapidly diminishes (O. Y.-H. Lin & 
MacLeod, 2018; Schmidt & De Houwer, 2016b; Schmidt 
et al., 2010). Though not necessarily eliminated entirely 
(and even persisting in much reduced form for hundreds 
of trials; Schmidt & De Houwer, 2016b), the effect does 
approach zero almost as quickly as the initial contingency 
learning effect appeared. This suggests that the 
contingency effect is heavily influenced by very recently-
encountered events. The fact that contingency learning 
effects are so pliable in the colour-word contingency 
learning paradigm is intriguing. Though persistent 
effects of previously experienced contingencies are still 
observed after the contingencies are removed, and the 
contingency effect cannot be exclusively explained by 
word-colour conjunctions one to five trials back (Schmidt 
et al., 2010; but see, Giesen, Schmidt, & Rothermund, 
2020; Schmidt, Giesen, & Rothermund, in press), the 
results so far suggest that, for the most part, recent 
experience is what matters most.

Contingency learning effects like this are interesting 
in that they resemble a habit (for a review, see Wood & 
Rünger, 2016). Organisms tend to repeat behaviours 
in response to given stimuli, especially when these 
responses are rewarded (Thorndike, 1911). In the colour-
word contingency learning paradigm this is reflected by 
the bias to repeat the frequently paired response to the 
(task-irrelevant) word stimulus. The best way to define a 
habit is not consistently agreed upon (De Houwer, 2019). 
On the one hand, a habit might be defined in a broad 
sense as roughly synonymous with “automaticity.” In this 
sense, habitual responding is observed when a learned 
response is automatically evoked by a stimulus as the 
so-called “default” response (Evans & Stanovich, 2013). 
This definition focuses on the conditions under which 
responding occurs and does not specify the underlying 
mental mechanisms (whether the response is caused by 
stimulus representations, attitudes, or goals). A narrower 
definition of a habit, however, refers exclusively to the 
automatic priming of a specific response, and specifically 
excludes the operation of goals or attitudes (Wood & 
Rünger, 2016). Even more restrictively, Dickinson (1985; 
Heyes & Dickinson, 1990) defines habits as stimulus-driven 
responses (mediated by mental S-R associations) that have 
been installed via overtraining, and contrasts them with 
goal-directed actions that are driven by representations 
of the values and expectancies of the outcomes of these 
responses. By these more restrictive criteria, it can be 

quite difficult to determine when a behaviour is truly 
habitual, even in common metrics of habits like stimulus 
revaluation (e.g., De Houwer, Tanaka, Moors, & Tibboel, 
2018; Moors, Boddez, & De Houwer, 2017).

Another way of thinking about contingency learning 
and habits (which is not necessarily incompatible with 
the view of Dickinson, 1985) is in terms of memory traces. 
According to an episodic memory perspective (Schmidt 
et al., 2010; Schmidt, De Houwer, & Rothermund, 2016), 
the colour-word contingency learning effect results 
from the storage and retrieval of episodic memories or 
exemplars (Logan, 1988). As more and more episodes 
linking a stimulus to a response are stored, presentation 
of said stimulus will more strongly bias retrieval in favour 
of the high contingency response.

In either case, the automatic biasing of the high 
contingency response to a word in the colour-word 
contingency learning paradigm might be regarded as 
a habit, though this might depend both on how one 
defines a habit and what assumptions are made about 
the mechanisms producing the effect (De Houwer, 2019). 
In the present manuscript, our primary interest is in 
exploring the automatic or default biasing of the high 
contingency response in the colour-word contingency 
learning paradigm, though we will return to potential 
implications for habit formation later.

The fact that contingency effects can be so pliable is 
interesting, as this suggests that recently-encoded events 
are particularly potent in their influence on performance, 
whereas older encoded events have minimal impact or 
rapidly become less potent (e.g., weakly retrievable). If so, 
then automatic responding might not be nearly as stable 
as previously thought. That is, it could be that a large chunk 
of what we regard as default responding (whether habitual 
in the restrictive sense or goal-mediated) is actually due 
to retrieval of only a very limited number of recently-
encoded event memories (Giesen et al., 2020; Schmidt 
et al., in press). Note that persistence of an automatic 
response over time is not necessarily inconsistent with 
this notion: Repeatedly responding in a similar way to a 
stimulus as you did on your recent experiences with the 
same stimulus will tend to preserve the same behaviours 
long term.

It should be noted, on the other hand, that previous 
colour-word contingency learning experiments were 
relatively short in duration. They may therefore not reflect 
cases in which, after a considerable amount of practice, 
a stable representation of the meaningful connection 
between the stimulus and response may eventually 
emerge. For instance, over a lifetime one learns that the 
word “blue” is pronounced “blue.” Even after considerable 
practice in a Stroop task where “blue” is presented 
equally often in all colours, the word “blue” will continue 
to interfere with naming of incongruent colours (Ellis 
& Dulaney, 1991; Gul & Humphreys, 2015; MacLeod, 
1998). That is, the relation between the word “blue” and 
its verbalisation is not quickly forgotten simply because 
the word is no longer predictive of the “blue” verbal 
response within the context of the experiment. It could 
be argued, however, that training studies with Stroop 
stimuli like this should be interpreted differently. Because 
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the (repeatedly-reinforced) goal is to name the print colour 
congruently throughout the task (e.g., saying “blue” to the 
print colour blue), the habitual links between colour word 
stimuli and verbal responses may be indirectly reinforced 
(e.g., the link between the concept “blue” and the 
verbalization “blue” is reinforced during colour naming, 
which indirectly keeps the word “blue” linked to a “blue” 
verbalisation). The colour-word contingency learning 
paradigm is more neutral in this regard, given the lack of 
a meaningful, pre-existing relation between the predictive 
(non-colour word) and target (colour) dimensions.

Also potentially informative in this regard is a series 
of experiments by MacLeod and Dunbar (1988). In these 
experiments, participants were trained to name novel 
shapes as colours (e.g., naming one polygon as “blue,” 
another as “pink,” etc.). After practice in shape naming, 
the task was reversed and participants named the (actual) 
print colours of the shapes. This allowed assessment of 
both “congruent” (or high contingency) trials, in which 
the (now task-irrelevant) shape is presented in the high 
contingency colour (i.e., the colour the shape was named as 
during training), and “incongruent” (or low contingency) 
trials, in which the shape is presented in a low contingency 
colour. In contrast to the colour-word contingency 
learning paradigm, a congruency/contingency effect 
was not observed immediately in this training paradigm. 
Instead, it took multiple days of training before the shape-
colour contingency began to influence performance when 
naming the colour of the shapes. This may have been due 
to the change in the task context (i.e., swapping the task-
relevant and ‑irrelevant features) or some other factor. In 
any case, in their Experiment 2, a congruency/contingency 
effect was still observed three months after the end of 
training. Although it is impressive that this contingency 
effect persisted in the absence of continued training, 
they did not test to see how this contingency effect was 

influenced by direct changes in the contingencies. It is 
possible, for instance, that the contingency effect would 
be immediately obliterated after introduction of a new 
contingency (counterconditioning) in which the shapes 
were briefly retrained with new colour names.

Given the above considerations, it is not clear whether 
the automatic response tendencies developed during 
implicit learning procedures, such as the colour-
word contingency learning paradigm, are stable. More 
generally, if such a training procedure does produce 
stable responding, then how long might one need to 
practice before the contingency effect is stable enough 
to, for instance, be resistant to unlearning (i.e., removal of 
the contingency) or counterconditioning (i.e., introduction 
of a new, conflicting contingency)? That is, how much 
training is needed for acquired contingency knowledge to 
form a stable automatic response that is strong enough 
to override the currently-experienced stimulus-response 
contingencies?

In our previous research, we already studied 
unlearning with the colour-word contingency learning 
paradigm, but the contingency was always removed 
after a relatively short training period (O. Y.-H. Lin & 
MacLeod, 2018; Schmidt & De Houwer, 2016b; Schmidt 
et al., 2010). In the present series of three experiments, 
we investigated whether a contingency effect for 
heavily overtrained stimuli diminished rapidly after the 
contingency is removed (unlearning) and whether the 
effect of the original contingency was either further 
maintained or rapidly changed when a new, different 
contingency was introduced (counterconditioning). These 
three types of procedures (implemented in different 
phases of the experiments) are illustrated in Figure 1. 
We also investigated to what extent a new contingency 
was quickly acquired for stimuli that were previously 
associated with other colours. In particular, one set of 

Figure 1: Three types of testing phases in the experiments with the stimuli that correspond to each condition. In the 
initial learning phase, a contingency was introduced. During the unlearning phase, the contingency was removed. 
During the counterconditioning phase, a different contingency for the same words was introduced. For overtrained 
words, the original learning phase comprised many blocks spread over either two days (Experiments 1 and 3) or one 
long session (Experiment 2). For other words, the original learning phase comprised only five small sub-blocks.

4 1 1
1 4 1
1 1 4

purple 
orange 

grey 

fin
d 

he
lp

 
kn

ow

Learning

2 2 2
2 2 2
2 2 2

purple 
orange 

grey 

fin
d 

he
lp

 
kn

ow

Unlearning 

1 4 1
1 1 4
4 1 1

purple 
orange 

grey 

fin
d 

he
lp

 
kn

ow
 Counterconditioning 

high: 
find, help, know 

 

low: 
find, help, know 
find, help, know 

old high: 
find, help, know 

 

new high: 
find, help, know 

 

low: 
find, help, know 

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/6/1/21/437543/320-4373-1-pb.pdf by U

niversity of Burgundy user on 14 August 2024



Schmidt et al: Contingency Learning and HabitsArt. 21, page 4 of 25  

words was trained first for an extended period of time 
(e.g., for two days in Experiments 1 and 3 or in one 
long session in Experiment 2). After this training, the 
contingency was removed for the second to last phase, 
and finally an alternative contingency was introduced 
in the final phase. These effects for heavily overtrained 
stimuli were compared to the same effects for recently-
introduced contingencies (i.e., with stimuli that were 
introduced only briefly before the unlearning and 
counterconditioning phases).

Two possible results could occur in this setup. The first 
possibility we term the recent-events-matter-most scenario. 
In this scenario, older events have minimal impact on 
performance, and performance is primarily determined 
by the stimulus-response bindings in the recently 
encountered events. That is, the learning mechanism is 
strongly “myopic” to events that were just experienced. 
This scenario is radically different from that predicted 
by traditional views of automatic responding discussed 
above, which assume that associations progressively 
strengthen over time, implying that frequency is more 
important than recency instead (of course, no one would 
argue that recent events do not influence behaviour at 
all). If the recent-events-matter most scenario obtains, 
then the contingency effect will disappear rapidly when 
the contingency is removed, even for the heavily trained 
stimuli. For instance, participants will stop responding 
faster to “find” in purple very shortly after “find” is changed 
to be presented equally often in all colours. It should 
similarly be expected that a newly introduced contingency 
for the same stimuli (i.e., counterconditioning) is rapidly 
learned. For instance, if “find” is now presented most 
often in orange (instead of purple), then participants 
should rapidly begin responding faster to “find” in orange, 
even after considerable training with “find” in purple. At 
the same time, the “old” high contingency (e.g., “find” in 
purple) should no longer influence performance after an 
extended unlearning phase and subsequent introduction 
of a “new” high contingency (e.g., “find” in orange).

The second possibility we term the eventually-stable-
habit scenario. In this scenario, while recently acquired 
contingency knowledge may be more pliable early on 
(i.e., as the recent-events-matter-most scenario suggests), 
the memory bias for an overtrained contingency is 
more stable after sufficient training. In other words, 
sufficiently repeated encoding of a stimulus-response 
binding into memory eventually makes it difficult for 
new bindings to “break” the overtrained habit. Thus, 
for the overtrained stimulus set, unlearning should be 
less rapid. In other words, we might expect the original 
contingency to “stubbornly persist” after the contingency 
is removed for overtrained stimuli (i.e., no unlearning). 
Similarly, acquisition of a new contingency during 
counterconditioning should be reduced when the original 
contingency was overtrained. For instance, if “find” is 
changed to be presented most often in orange (rather 
than purple), then speeded responses to “find” in orange 
should not emerge quickly (perhaps not at all). This would 
indicate that the find-purple habit is too strongly ingrained 
to be quickly overcome. At the same time, the “old” high 
contingency should continue to influence performance, 

that is, participants should continue to respond quickly 
to “find” in purple long after the find-purple contingency 
has been replaced by the find-orange contingency.

It should be noted in advance that the recent-events-
matter-most and eventually-stable-habit scenarios 
are deliberately presented as extremes, the former 
proposing very myopic learning and the latter proposing 
stubborn habit persistence. The truth may equally well 
lie somewhere in between these two extremes. That 
is, there might be both some continued influence of 
older experiences (e.g., from overtraining) in addition to 
influences of recently-acquired information. This would 
imply that we adapt quickly to newly-experienced events, 
but do not “catastrophically forget” everything that came 
before. To foreshadow our results, exactly this sort of 
mixed influence of both the new and old experiences 
was observed.

Experiment 1
Method 
Participants 
Fifty Ghent University undergraduates participated in the 
study on two separate 30 minute sessions one day apart 
in exchange for €10. Our sample size was determined a 
priori, but partially subjectively. In particular, as we had 
never previously studied counterconditioning with this 
procedure, we did not know how large of an effect to 
expect (i.e., for a priori power calculation). The current 
sample size seemed more than reasonable based on our 
prior experiences with the procedure on related topics. 
Two participants, however, did not show up for the second 
session and were therefore removed from the sample. 
Another participant had 16% incorrect responses in the 
main part of the experiment (i.e., excluding the practice 
block). This was over 2.5 standard deviations above 
the mean sample error rate. This participant was also 
removed from the sample. This participant contributed 
some notable noise to the sample, but inclusion of this 
participant did not influence the most critical results. 
Another participant had an empty cell (i.e., no correct 
response times) and was also removed.

Apparatus 
The experiment utilized a standard PC. Stimulus 
and response timing were controlled with E-Prime 2 
software (Psychology Software Tools, Pittsburgh, PA). The 
experiment files, along with the raw data, participant 
averaged data, and R scripts are available on the Open 
Science Framework (https://osf.io/7fwae/). Participants 
responded to purple, orange, and grey stimuli with the 
“J,” “K,” and “L” keys, respectively, on an AZERTY keyboard. 
Although we did not enforce specific fingers for the three 
keys, all participants in this and related studies defaulted 
to the standard keyboard resting position (i.e., right index 
on the J-key, right middle finger for the K-key, and right 
ring finger for the L-key).

Design 
The structure of the experiment is presented in 
Figure 2. In each of the two testing days, participants 
were exposed to four larger mega-blocks, each with 5 sub-
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blocks of 36 trials (180 trials in each mega-block; 1440 
trials total). In addition, on Day 1 participants also began 
with a practice block of 36 trials to familiarize participants 
with the colour-to-key mapping. To this end, trials in 
the practice block consisted of the stimulus “@@@@” 
presented in each of three colours (purple, orange, and 
grey) 12 times each and participants were instructed to 
respond as quickly and accurately as possible. For the 
four experimental mega-blocks of each day, four sets of 
three words (Sets A–D) were created from a list of 12 four 
letter, first person Dutch verbs. The verbs are presented 
in Table 1. Note that which words were a part of which 
set and which words were presented most often in which 
colour were counterbalanced by assigning words, in 
the order listed in Table 1, to lists offset by participant 
number (e.g., “vind,” “help,” and “weet” were the Set A 
words for Participants 1, 13, 25, etc., “help,” “weet,” and 
“denk” were the Set A words for Participants 2, 14, 26, 
etc.). The first three experimental mega-blocks of Day 1 
constituted the training phase in which Set A (e.g., “vind,” 
“help,” and “weet”) and Set B words (e.g., “denk,” “roep,” and 
“geef”) were presented. In each of five sub-blocks of each 
mega-block, one word from each set was presented most 
often (i.e., four of six times: 67%) in purple (e.g., “vind” 
and “denk”), a second most often in orange (e.g., “help” 

and “roep”), and a third most often in grey (e.g., “weet” 
and “geef”). Each word was presented once (17%) in each 
of the remaining two colours per sub-block. Note that Set 
A stimuli were the “overtrained” words that were used 
throughout the entire experiment. Set B words were filler 
words included in the first training phase to keep the task 
similar throughout (i.e., with six words in three colours). 
Because they were not of interest for the main analyses, 
we do not report the analyses on Set B stimuli, though we 
note that comparisons with Set A stimuli revealed nothing 
problematic. Sets C and D served as the non-overtrained 
stimuli that appeared later in the experiment. In the forth 
and final mega-block of Day 1, Set A stimuli remained, 
but Set B words were replaced by Set C words, which 
had a word-colour contingency manipulation identical 
to that for Sets A and B. In this final mega-block, it is 
possible to compare the magnitude of the learning effect 
of the heavily-overtrained Set A words with the newly-
experienced Set C words.

On Day 2, the first mega-block was identical to the 
last one experienced on Day 1 (i.e., with Set A and Set C 
words), allowing a comparison of Set A and Set C again, 
but after a night of consolidation. The next mega-block 
again maintained the Set A words, but replaced the Set C 
words with Set D words (i.e., another newly trained set). In 

Figure 2: Composition of the phases, mega-blocks, and sub-blocks in the two testing days, with the sub-blocks of each 
mega-block indicated as separate squares. The two stimulus sets (A–D) in a given mega-block are indicated along 
with the contingency (in percentage) for the high contingency response. Changes in stimulus sets and contingency 
percentages from the prior mega-block are presented in bold. Note that in the final mega-block the “old” contingency 
is weakened and a “new” contingency is introduced.
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Table 1: Dutch stimuli and English translations with example set assignments.

Set A Set B Set C Set D

Dutch English Dutch English Dutch English Dutch English

vind find denk think zend send kies choose

help help roep call lach laugh maak make

weet know geef give neem take trek pull

Note: This is only one example counterbalancing of words to sets.
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the third mega-block to follow, the same Set A and Set D 
words were again presented, but the words were no longer 
predictive of the colour response. In particular, each of the 
words was presented two out of six times (33%) in each 
of the three colours. Thus, this mega-block constitutes 
the unlearning phase as it allows comparing the rate of 
unlearning for the heavily-overtrained Set A words with 
the newly-learned Set D words. In a final mega-block, 
which constitutes the counterconditioning phase, the 
same Set A and Set D words were again presented, but 
the contingencies were now changed. In particular, the 
word that used to predict purple was now presented most 
often in orange, the word that used to predict orange 
was presented most often in grey, and the word that 
used to be presented most often in grey was presented 
most often in purple. Thus, this mega-block allowed us 
to assess to what extent the new contingency is learned 
and whether the heavily-overtrained Set A contingencies 
are more resistant to a change in contingency than the 
newly-experienced Set D contingencies. For each of these 
sets (A and D), we can compare old high contingency items, 
which are pairings that previously had a high contingency 
but not anymore, to new high contingency items, which 
are pairings that currently have a high contingency but 
did not before. Both of these can further be compared to 
low contingency items, which are pairings that never had 
high contingency.

Note that for most of the above-mentioned contrasts 
we might not only expect larger contingency effects for 
overtrained stimuli, but also potential main effects of 
word type. This is because both the high and the low 
contingency pairings with overtrained stimuli have been 
experienced more frequently than the high and low 
contingency pairings with recently-acquired contingencies 
(for further discussion of the frequency versus proportion 
distinction, see Schmidt & De Houwer, 2016a). In other 
words, we might expect that high contingency Set A items 
will be responded to faster than high contingency Set D 
items and, similarly, that low contingency Set A items will 
be responded to faster than low contingency Set D items.

Procedure 
Stimuli were presented in the center of a black (0,0,0) 
screen, and presented in bold, 18 pt. Courier New font. 
On each trial, the participant was first presented a white 
(255,255,255) fixation “+” for 150 ms. This was followed 
by the word (or @’s during practice) in a neutral brown 
(255,183,113) for 150 ms, which was then colourized 
in one of the three target colours: purple (128,0,128), 
orange (255,165,0), or a light grey (192,192,192), which 
correspond to “purple,” “orange,” and “silver” in the standard 
E-Prime/HTML colour palette. This word preview was used 
because it is known to boost contingency effects (Schmidt & 
De Houwer, 2016b), likely because the word has more time 
to influence colour identification. The stimulus remained 
on the screen until either a response was made or 1500 ms 
elapsed. Following correct responses, the next trial began 
immediately. Following an incorrect response or 1500 ms 
without a response “XXX” was presented in white for 1000 
ms before the next trial. Participants were instructed to try 
to respond as quickly and accurately as possible.

Results 
Analyses focused on mean correct response times during 
the main phases of the experiment (i.e., practice phase 
excluded). Trials for which participants did not respond 
before the 1500 ms deadline were excluded, but no other 
response time trims were performed (as has been our 
standard practice with this paradigm). Error data are not 
reported here given that they were far too noisy to produce 
anything meaningful and that the general length of the 
reported analyses was already long, but there were no 
speed-accuracy trade-offs and the error data are available 
for download (along with the response time data and R 
scripts for both dependent measures) on the Open Science 
Framework (https://osf.io/7fwae/). In all analyses, sub-
block was treated as a linear factor, which is more sensible 
than treating the sub-block as an unordered factor. Indeed, 
a linear factor allows for inferences about increases or 
decreases across sub-blocks (whether for the main effect 
or interactions involving sub-block), whereas the same is 
not true when treating sub-block as a categorical factor 
(e.g., a significant sub-block effect could hypothetically 
emerge due to abnormally fast or slow responses in one 
of the middle blocks). Linear factors should generally 
be used for any interval or scale factor. In the interest 
of brevity, only the theoretically interesting contrasts 
are reported (whether significant or non-significant). 
We do not report the less interesting contrasts, unless 
p < .1 (thus, the reader can correctly assume that any non-
reported factor or interaction is not significant). Note that 
we did not preregister, but all data analyses for this and 
the following two experiments were planned in advance 
and similar to those in our past reports with this task. 
The only exception was the addition of some Bayes tests, 
which we added in response to editor feedback. All Bayes 
tests were conducted with the BayesFactor package in r 
with the default Cauchy prior and 100,000 recomputes to 
increase precision. The contingency effect as a function 
of the mega-blocks is presented in Figure 3 and the sub-
block means and standard errors are presented in Table A1 
for both response times and errors (see also the R scripts).

Day 1, Sets A and C 
First, we compared Set A (which had already been trained 
for 15 sub-blocks) with the newly added Set C using a sub-
block (16–20) by contingency (high vs. low) by set (A vs. C) 
ANOVA to test for potential differences between the more 
heavily trained Set A stimuli over the new Set C stimuli. 
The contingency effect was significant, F(1,45) = 10.233, 
MSE = 5520, p = .002, 2 .19p  , and this contingency effect 
increased across blocks, F(1,45) = 10.645, MSE = 4321, 
p = .002, 2 .19p  . Interestingly, there was a main effect 
of set, F(1,45) = 8.987, MSE = 3331, p = .004, 2 .17p  , 
indicating faster overall performance for the overtrained 
Set A stimuli. In particular, Set A high contingency trials 
(mean = 612 ms, SE = 11) were marginally faster than 
Set C high contingency trials (mean = 622 ms, SE = 11), 
F(1,45) = 3.493, MSE = 2986, p = .068, 2 .07p  , and Set 
A low contingency trials (mean = 626 ms, SE = 12) were 
significantly faster than Set C low contingency trials 
(mean = 639 ms, SE = 13), F(1,45) = 4.852, MSE = 4189, 
p = .033, 2 .10p  . Thus, an overall advantage was evident 
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for the overtrained stimuli, albeit only significantly so 
for the infrequent pairings. Globally, this is consistent 
with the notion that the frequency of co-occurrences 
between a stimulus and response is important, not just 
the proportion (Schmidt & De Houwer, 2016a). However, 
the contingency effect (i.e., the difference between high 
and low contingency trials) was not significantly different 
between Set A and C stimuli, F(1,45) = 0.213, MSE = 3843, 
p = .545, 2 .01p  , BF01 = 8.95.

Day 2, Sets A and C 
Sets A and C were again compared on Day 2 with a 
sub-block (21–25) by contingency (high vs. low) by set 

(A vs. C) ANOVA. The contingency effect was significant, 
F(1,45) = 30.091, MSE = 1824, p < .001, 2 .40p  . There 
was again a main effect of block, F(1,45) = 13.312, 
MSE = 6216, p < .001, 2 .23p  , perhaps again hinting 
at fatigue. As with the previous block, the contingency 
effect was not significantly different between the 
two sets, F(1,45) = 2.277, MSE = 2713, p = .138, 
2 .05p  , BF01 = 2.68, though the trend was for a larger 

effect for the overtrained Set A stimuli (mean = 550 
ms, SE = 8 and mean = 571 ms, SE = 8, respectively, 
for high and low contingency) than for Set D stimuli 
(mean = 560 ms, SE = 8 and mean = 570 ms, SE = 10,  
respectively).

Figure 3: Experiment 1 contingency effect (low minus high contingency) as a function of block for the overtrained 
stimuli (top) and other stimuli (bottom) with standard errors. The sub-block numbers are indicated on the x-axis, but 
data are aggregated over the larger mega-blocks for presentation purposes. Light grey indicates the unlearning phase 
and dark grey indicates the counterconditioning phase. The single squares in the last block represent the low minus 
new high contingency contrast.
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Day 2, Sets A and D 
Next, we compared Set A with a newly-introduced Set D 
using a sub-block (26–30) by contingency (high vs. low) by set 
(A vs. D) ANOVA, again to test for any potential advantages for 
the overlearned Set A stimuli over the new Set D stimuli. The 
main effect of contingency was significant, F(1,45) = 21.608, 
MSE = 2915, p < .001, 2 .32p  . This contingency effect 
interacted with set, F(1,45) = 8.817, MSE = 3996, p = .004, 
2 .16p  , indicating larger contingency effects for the 

overtrained Set A stimuli than for the new Set D stimuli. 
Indeed, the contingency effect was significant for Set A, 
F(1,45) = 24.466, MSE = 3932, p < .001, 2 .35p  , but not 
for Set D, F(1,45) = 0.672, MSE = 2978, p = .417, 2 .01p  . 
Again, there was a main effect of set, F(1,45) = 5.295, MSE 
= 1589, p = .026, 2 .11p  , indicating faster responses to 
the overtrained Set A stimuli. In particular, Set A high 
contingency trials (mean = 563 ms, SE = 9) were significantly 
faster than Set D high contingency trials (mean = 582 ms, 
SE = 10), F(1,45) = 19.160, MSE = 2037, p < .001, 2 .30p  , 
but there was no difference between Set A (mean = 592 ms, 
SE = 11) and D (mean = 586 ms, SE = 8) low contingency 
trials, F(1,45) = 1.299, MSE = 3547, p = .260, 2 .03p  .

Day 2, unlearning 
Next, we compared Sets A and D during unlearning using 
a sub-block (31–35) by contingency (high vs. low) by set 
(A vs. D) ANOVA (i.e., where the contingency factor codes 
for the previously-applicable regularity). The contingency 
effect across sets was still significant during unlearning, 
F(1,45) = 26.748, MSE = 2178, p < .001, 2 .37p  . However, 
there was no difference in the contingency effect between 
sets, F(1,45) = 0.034, MSE = 2382, p = .855, 2 .01p  , 
BF01 = 9.48, with the difference between high (mean = 579 
ms, SE = 11) and low contingency trials (mean = 594 ms, 
SE = 11) in Set A being similar to that in Set D (mean = 578 
ms, SE = 11 and mean = 595 ms, SE = 10, respectively). This 
finding is not as the eventually-stable-habit hypothesis 
would predict. In addition, the contingency effect was 
marginally smaller for Set A stimuli in the unlearning 
phase relative to the preceding acquisition phase, F(1,45) 
= 4.029, MSE = 528, p = 0.051, 2 0.08p  . The fact that 
the contingency effect was still robust in the absence of a 
contingency is also not consistent with the recent-events-
matter-most hypothesis. There was also a marginal main 
effect of sub-block, F(1,45) = 3.483, MSE = 3324, p = .069, 
2 .07p  , again hinting at fatigue.

Day 2, counterconditioning 
Finally and most critically, we considered the 
counterconditioning blocks where we directly pitted an 
old (recent or overtrained) high contingency against a 
newly-introduced inconsistent high contingency. Most 
importantly, we began by considering whether reduction 
in the effect of the old high contingency and learning of 
the new high contingency was faster with the new Set D 
stimuli than with the overtrained Set A stimuli. For this, 
we began by comparing the trials in which the word was 
presented with the colour that was high contingency 
during initial training (old high contingency) with trials 
in which the word was presented with the colour that 
is currently high contingency (new high contingency). 

Trials in which the word was presented in a colour that 
was low contingency in all phases will be considered 
afterwards. Thus, we first conducted a sub-block (36–40) 
by contingency (old high vs. new high) by set (A vs. D) 
ANOVA, and followed this with the relevant contrasts. 
There was no main effect of contingency, F(1,45) = 0.002, 
MSE = 3438, p = .969, 2 .01p  . Note, of course, that this 
is not a test of the contingency effect per se, but of the 
comparison between the new versus old contingency. 
Thus, this should not be interpreted as no evidence of 
learning. There was a robust crossover interaction between 
contingency and set, F(1,45) = 14.334, MSE = 4009, 
p < .001, 2 .24p  , as illustrated in Figure 4. Exploring 
this interaction further, old high contingency items 
(mean = 579 ms, SE = 10) were responded to significantly 
faster than new high contingency items (mean = 593 ms, 
SE = 11) in Set A, F(1,45) = 8.780, MSE = 3336, p = .005, 
2 .16p  , but significantly slower (mean = 595 ms, SE = 11 

vs. mean = 582 ms, SE = 10, respectively) in Set D, F(1,45) 
= 6.856, MSE = 4111, p = .012, 2 .13p  . Furthermore, in 
ANOVAs comparing high to low contingency, responses 
were significantly faster on old high contingency relative to 
low contingency trials (mean = 598 ms, SE = 12) for Set A, 
F(1,45) = 6.890, MSE = 7019, p = .012, 2 .13p  , indicating 
a preservation of the original learning, but there was no 
significant difference between new high contingency 
and low contingency trials, F(1,45) = 0.351, MSE = 6774, 
p = .557, 2 .01p  , BF01 = 7.96, suggesting a failure to 
acquire the new contingency (albeit with a numerical trend 
in the correct direction). In contrast, for Set D stimuli there 
was no difference between old high and low contingency 
trials (mean = 599 ms, SE = 11), F(1,45) = 0.356, MSE = 
10570, p = .553, 2 .01p  , BF01 = 8.84, suggesting abolition 
of the original contingency learning effect (though, again 
the means were in the correct direction), but a significant 
difference between new high and low contingency items, 
F(1,45) = 8.742, MSE = 6013, p = .005, 2 .16p  , indicating 
acquisition of the new contingency.

Figure 4: Experiment 1 mean response times with standard 
errors for old, new, and low contingency items (collapsed 
across sub-block) for the overtrained (Set A) and recently-
introduced (Set D) stimuli during counterconditioning.
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Discussion 
Experiment 1 produced results that did not overwhelmingly 
support either of the two strong views mentioned in the 
Introduction. For some contrasts, there was no robust 
evidence of a difference between overtrained and newly-
acquired contingencies. For instance, no differences 
were observed between Set A and Set D stimuli in the 
unlearning phase, where the contingency effect for 
overtrained Set A stimuli marginally decreased (i.e., did 
not “stubbornly persist” in an unchanged magnitude). 
Findings such as this could be considered as evidence 
for the recent-events-matter-most scenario, which 
predicts no differences between heavily-overtrained and 
newly-learned contingencies. On the other hand, overall 
response times were faster to the overtrained Set A stimuli 
relative to newly-added stimuli during the acquisition 
phases for Sets C and D (but only on Day 1 for the former). 
That is, there was a general speedup of responses to the 
overtrained stimuli, both high and low contingency, 
relative to recently-introduced stimuli. This is consistent 
with the notion that practice with the co-occurrence of 
stimuli (even if task irrelevant) and responses benefits 
performance (Lemercier, 2009; Schmidt & De Houwer, 
2016a; Schmidt et al., 2016). That is, even though the 
proportions of high versus low contingency pairings 
are equivalent for overtrained and recently-introduced 
contingencies (i.e., 4/6 high contingency pairings, and 
1/6 for each low contingency pairing), participants have 
more frequently observed each compound stimulus for 
the overtrained Set A stimuli (Y.-H. Lin, 2015). For instance, 
by the end of the acquisition phase for Set D, participants 
had seen each high contingency pairing 120 times for Set 
A, but only 20 times for Set D. Similarly, they had seen 
each low contingency pairing 30 times for Set A, but only 
5 times for Set D. However, the contingency effect (i.e., 
difference between high and low contingency trials) was 
only (robustly) larger in the Set A versus Set D comparison. 
For Set C, it is possible that the overall advantage (i.e., 
main effect) for the overtrained stimuli worked against 
the contingency effect, in line with previous findings 
that effects tend to scale up with mean response time 
(Stevens et al., 2002; Urry, Burns, & Baetu, 2015; Schmidt 
& De Houwer, 2016b; Schmidt et al., 2016). That is, 
even though contingency knowledge may be stronger 
for the overlearned stimuli, there is less time for this 
contingency knowledge to be expressed (i.e., to influence 
colour decisions) as overall responding was quicker to 
overlearned stimuli. Stated differently, even though the 
contingency knowledge might be stronger for Set A, the 
difference between high and low contingency trials might 
not be notably larger in this set because the fast overall 
response speed to Set A stimuli precluded the influence of 
the contingency knowledge on the response times.

During counterconditioning, there was a trend for faster 
responses to both the old and new high contingency trials 
relative to low contingency trials, though only the old 
contingency effect was robust for the overtrained Set A 
and only the new contingency effect was robust for newly 
added Set D items. The interaction between set (A vs. D) 
and contingency (new vs. old) was robust. This suggests 
that the old contingency persists to a greater extent 

with overtraining, and the new contingency is learned 
more quickly with newly-acquired contingencies. For all 
comparisons between overtrained and recently-acquired 
contingencies, no results pointed in the reverse direction 
than the eventually-stable-habits account would suggest 
(e.g., smaller effects of the old contingency for Set A), 
though an overwhelming difference between overtrained 
and recently-acquired contingencies does not seem 
apparent (i.e., for many contrasts there were no differences, 
and for others only small differences). Together, the results 
might suggest some carryover influence of overtraining, 
but a remaining potent influence of recent events (i.e., 
even with overtraining).

Experiment 2
Results from Experiment 1 suggest that neither of the 
two extreme views we discussed in the Introduction are 
correct. That is, it was not the case that only recent events 
had an influence on performance (which would have 
predicted no differences at all between Set A and Sets 
C and D), and it was also not the case that overlearning 
completely prevented any new learning (which would 
have predicted, for instance, no unlearning at all for 
Set A). Instead, the results supported an intermediate 
view, with some findings suggesting a lasting (though 
perhaps subtle) influence of overtraining, but 
with a robust influence of very recent experiences. 
Experiment 2 aimed to provide a conceptual replication 
of Experiment 1. The most important change was that we 
dropped the two-day design and instead used a longer 
single day design (with 6 mega-blocks in one day, instead 
of 4 per day). We also dropped the Set C stimuli. Put 
differently, Experiment 2 was identical to Experiment 1 
in all respects except that sub-blocks 16–25 (the fourth 
and fifth mega-blocks in Figure 2) were dropped and the 
remaining 30 sub-blocks (6 mega-blocks) were tested in 
one day. This does imply, however, that the initial training 
duration for Set A is shorter in Experiment 2 and does 
not include a night of sleep consolidation. Also note that 
we continue to label the last-introduced words as “Set D” 
for consistency with the prior experiment even though 
there was no longer a Set C.

Method  
Participants  
Sixty-one Ghent University undergraduates participated in 
the study in one 30 minute session in exchange for €5. A 
slightly larger sample was collected because we supposed 
that any potential differences between overtrained and 
recently-learned contingencies might be smaller with a 
shorter training period. Using the same exclusion criteria 
as the prior experiment, only one participant was excluded 
due to an empty cell.

Apparatus, Design, and Procedure  
The apparatus, design, and procedure of the current 
experiment were identical to Experiment 1 with the 
following exceptions. The two mega-blocks with Set C 
stimuli from Experiment 1 (see Figure 2) were dropped 
and the remaining six mega-blocks were run in one 
day (i.e., 3 A+B learning mega-blocks, followed by A+D 
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learning, unlearning, and counterconditioning blocks; 
1080 trials in total).

Results  
Data were analysed in the same manner as in the prior 
experiment. The contingency effect as a function of 
the mega-blocks is presented in Figure 5. The means 
and standard errors for the response times and errors 
are presented in Table A2 in the Appendix (see also the 
R scripts).

Sets A and D  
First, we compared Set A (which had already been trained 
for 15 sub-blocks) with a newly-introduced Set D using a 

sub-block (16–20) by contingency (high vs. low) by set (A vs. 
D) ANOVA. The main effect of contingency was significant, 
F(1,59) = 28.503, MSE = 5422, p < .001, 2 .33p  . This 
contingency effect interacted with set, F(1,59) = 11.529, MSE 
= 3099, p = .001, 2 .16p  , indicating larger contingency 
effects for the overtrained Set A stimuli than for the new Set 
D stimuli. The contingency effect was significant for Set A 
(mean = 595 ms, SE = 8 and mean = 629 ms, SE = 8 for high 
and long contingency trials, respectively), F(1,59) = 39.518, 
MSE = 4288, p < .001, 2 .40p  , and for Set D (mean = 610 
ms, SE = 8 and mean = 622 ms, SE = 8, respectively), F(1,59) 
= 4.919, MSE = 4233, p = .030, 2 .08p  . There was also a 
marginal main effect of sub-block, F(1,59) = 3.256, MSE = 
6562, p = .076, 2 .05p  .

Figure 5: Experiment 2 contingency effect (low minus high contingency) as a function of mega-block (collapsed across 
sub-blocks, indicated in x-axis) with standard errors. Data are aggregated over the larger blocks. Light grey indicates 
the unlearning phase and dark grey indicates the counterconditioning phase. The single squares in the last block 
represent the low minus new contingency contrast.
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Unlearning  
Next, we compared Sets A and D during unlearning using 
a sub-block (21–25) by contingency (high vs. low) by set 
(A vs. D) ANOVA. The contingency effect was only marginal 
during unlearning, F(1,59) = 3.103, MSE = 4003, p = .083, 
2 .05p  . There was a main effect of sub-block, F(1,59) = 

6.113, MSE = 6745, p = .016, 2 .09p  , hinting at fatigue. 
Critically, there was no difference in the contingency 
effect between sets, F(1,59) = 2.432, MSE = 2350, p = .124, 
2 .04p  , BF01 = 4.72, with the difference between high 

(mean = 610 ms, SE = 8) and low contingency trials (mean = 
612 ms, SE = 7) in Set A similar to that in Set D (mean = 606 
ms, SE = 9 and mean = 617 ms, SE = 8, respectively). In 
addition, the contingency effect was robustly smaller for 
Set A stimuli during unlearning relative to the preceding 
acquisition phase, F(1,59) = 22.060, MSE = 676, p < .001, 
2 .27p  . These latter two findings are again inconsistent 

with the eventually-stable-habit view.

Counterconditioning  
For the counterconditioning phase, we again begin 
with a block (26–30) by contingency (old vs. new) by 
set (A vs. D) ANOVA. Again, there was no main effect 
of contingency, F(1,59) = 0.780, MSE = 5259, p = .375, 
2 .01p   (note again that this is not a test of learning, 

but rather a comparison of old vs. new learning). In 
contrast to Experiment 1, however, the contingency by 
set interaction was not significant, F(1,59) = 0.347, MSE 
= 3756, p = .558, 2 .01pη < , BF01 = 9.64, as illustrated in 
Figure 6. Relative to low contingency trials (mean = 
629, SE = 10 for Set A and mean = 623, SE = 10 for Set 
D), the contingency effect (across sets) was significant 
for the old contingency (mean = 619, SE = 10 for Set A 
and mean = 610, SE = 10 for Set D) trials (i.e., old high 
vs. low), F(1,59) = 4.501, MSE = 8898, p = .038, 2 .07p  , 

and for the new contingency (mean = 612, SE = 8 for Set 
A and mean = 607, SE = 8 for Set D) trials (i.e., new high 
vs. low), F(1,59) = 12.257, MSE = 5729, p < .001, 2 .17p  , 
indicating both some preservation of the old contingency 
and acquisition of the new one.

Discussion  
Like Experiment 1, Experiment 2 produced some results 
indicating an overtraining advantage for Set A stimuli, 
but this time only in the comparison of the contingency 
effect for the just-introduced Set D stimuli relative to 
the overtrained Set A stimuli. In particular, there was 
a larger contingency effect for Set A. However, there 
was again no difference between the two sets during 
unlearning. Further, there was evidence of both a 
preservation of the old contingency and acquisition of 
the new contingency during the counterconditioning 
phase. Unlike Experiment 1, however, this did not seem 
to be influenced markedly by set. The old contingency 
effect does, on its own, indicate a persisting influence of 
older experiences: Even after 180 trials of unlearning and 
a subsequent introduction of an opposing contingency 
during counterconditioning, the originally-trained 
regularity continued to influence behaviour. However, 
even extensive overtraining (i.e., for Set A) did not seem 
to altogether prevent acquisition of a new contingency 
and this is not consistent with the strong view that heavy 
overtraining prevents acquisition of new knowledge.

Experiment 3
Results from Experiments 1 and 2 both provide some 
hints of an effect of overtraining, but not evidence 
for an overwhelming effect. For instance, the original 
contingency for Set A stimuli did not “stubbornly persist” 
through unlearning, instead reducing substantially 
as with the Set D stimuli. Further, Experiment 2 did 
not replicate the interaction between set (A vs. D) 
and contingency (old high vs. new high), instead 
showing significant effects for both new and old high 
contingencies (relative to low contingency) across 
sets, indicating both persistence of old contingency 
knowledge (inconsistent with the recent-events-matter-
most scenario) and acquisition of new contingency 
knowledge (inconsistent with the eventually-stable-
habits scenario). This might indicate that the amount 
of initial training is less important for persistence of 
the old contingency through counterconditioning than 
Experiment 1 suggested. Alternatively, it might be that 
the shorter overtraining phase was responsible for the 
lack of an interaction in Experiment 2. We therefore 
decided to run a third experiment as a conceptual 
replication of Experiment 1, that is, with a session of two 
separate days, but with an even longer training phase.

Method   
Participants   
Fifty Ghent University undergraduates participated 
in the study in two sessions in exchange for €10, as in 
Experiment 1. Using the same exclusion criteria as the 
prior experiments, no participants were excluded.

Figure 6: Experiment 2 mean response times (collapsed 
across sub-block) with standard errors for old, new, and 
low contingency items for the overtrained (Set A) and 
recently-introduced (Set D) stimuli during countercon-
ditioning.
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Apparatus, Design, and Procedure   
The apparatus, design, and procedure of the current 
experiment were identical to Experiment 1 with the 
following exceptions. There were six mega-blocks per 
day instead of four, but we again excluded Set C stimuli 
and ran nine mega-blocks of A+B learning (i.e., 6 on Day 
1 and 3 on Day 2), followed by the same A+D learning, 
unlearning, and counterconditioning mega-blocks as in 
the prior two experiments (2160 trials total).

Results   
Data were analysed in the same manner as in the prior 
experiments. The contingency effect as a function of the 
larger blocks is presented in Figure 7. The means and 

standard errors for response times and errors are presented 
in Table A3 in the Appendix (see also the R scripts).

Sets A and D   
First, we compared the overtrained Set A with a newly-
introduced Set D using a sub-block (46–50) by contingency 
(high vs. low) by set (A vs. D) ANOVA. The main effect 
of contingency was significant, F(1,49) = 28.982, MSE 
= 4675, p < .001, 2 .37p  . This contingency effect 
interacted with set, F(1,49) = 7.061, MSE = 3667, p = .011, 
2 .13p  , again indicating larger contingency effects 

for the overtrained Set A stimuli than for the new Set D 
stimuli. The contingency effect was significant for Set A 
(mean = 560 ms, SE = 8 and mean = 593 ms, SE = 9 for 

Figure 7: Experiment 3 contingency effect (low minus high contingency) as a function of block (sub-blocks indicated in 
x-axis) with standard errors. Data are aggregated over the mega-blocks. Light grey indicates the unlearning phase and 
dark grey indicates the counterconditioning phase. The single squares in the last sub-block represent the low minus 
new high contingency contrast.
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high and low contingency, respectively), F(1,49) = 33.698, 
MSE = 4152, p < .001, 2 .41p  , and for Set D (mean = 
574 ms, SE = 8 and mean = 587 ms, SE = 8, respectively), 
F(1,49) = 5.121, MSE = 4190, p = .028, 2 .09p  .

Unlearning   
Next, we compared Sets A and D during unlearning using 
a block (51–55) by contingency (high vs. low) by set 
(A vs. D) ANOVA. The contingency effect was significant, 
F(1,49) = 19.746, MSE = 4235, p < .001, 2 .29p  , 
indicating persistence of the initial contingency during 
unlearning. There was a marginal main effect of set, 
F(1,49) = 3.925, MSE = 2862, p = .053, 2 .07p  , indicating 
overall faster responses for Set A stimuli, consistent with 
an overall benefit for overtrained stimuli. However, there 
was no difference in the contingency effect between sets, 
F(1,49) = 0.846, MSE = 3177, p = .362, 2 .02p  , BF01 = 7.27, 
though with a numerical trend in the direction that the 
eventually-stable-habit account would predict (mean 
= 565 ms, SE = 8 and mean = 587 ms, SE = 7 for high 
and low contingency in Set A, and mean = 575 ms, SE = 8 
and mean = 590 ms, SE = 7 in Set D). The contingency 
effect for Set A was only non-significantly reduced in the 
unlearning phase relative to the preceding acquisition 
phase, F(1,49) = 1.983, MSE = 891, p = .165, 2 .04p  .

Counterconditioning   
For the counterconditioning phase, we again begin 
with a sub-block (56–60) by contingency (old high vs. 
new high) by set (A vs. D) ANOVA. Again, there was no 
main effect of contingency, F(1,49) = 0.329, MSE = 5955, 
p = .569, 2 .01p   (note again that this is not a test of 
the contingency effect proper, but the new versus old 
contingency). Again, the contingency by set interaction 
was not significant, F(1,49) = 0.322, MSE = 3860, p = .573, 
2 .01p  , as illustrated in Figure 8, BF01 = 9.30. There 

was a significant sub-block by contingency interaction, 
F(1,49) = 6.134, MSE = 6842, p = .017, 2 .11p  , indicating 
a tendency for the old contingency effect to decrease 
and the new contingency effect to increase across sub-
blocks. Relative to low contingency trials (mean = 591 
ms, SE = 9 in Set A and mean = 589 ms, SE = 9 in Set 
D), the contingency effect (across sets) was significant for 
the old contingency (mean = 572 ms, SE = 9 in Set A and 
mean = 573 ms, SE = 9 in Set D) trials (i.e., old vs. low), 
F(1,49) = 6.087, MSE = 10300, p = .017, 2 .11p  , and for 
the new contingency (mean = 576 ms, SE = 8 in Set A and 
mean = 579 ms, SE = 7 in Set D) trials (i.e., new vs. low), 
F(1,49) = 8.001, MSE = 5310, p = .007, 2 .14p  .

Discussion   
As in the prior two experiments, Experiment 3 produced 
some results consistent with a benefit from overtraining. 
In particular, contingency effects were larger for Set A 
stimuli relative to Set D during initial acquisition of Set 
D contingencies. Similarly, response times were overall 
faster to Set A stimuli during unlearning. However, 
learning of the new contingency was observed for both 
sets of stimuli during counterconditioning. There was, 
nevertheless, again a persistence of the old contingency 
in the counterconditioning phase, which did not differ 
notably between the overtrained and recently-acquired 
stimuli. Together, the results again suggest a very strong 
influence of recent experiences, including for overtrained 
stimuli, as the recent-events-matter-most hypothesis 
would suggest. However, the results again suggest that 
learning is not completely “myopic” to only very recent 
experiences.

General Discussion
In the present series of experiments, we asked whether 
overlearning of contingencies either over two days 
(Experiments 1 and 3) or a single longer session 
(Experiment 2) would lead to a more stable learning 
effect, resistant to unlearning or counterconditioning, 
which we referred to as the eventually-stable-habit view. 
Alternatively, we considered the idea that learning might 
be rather “myopic” to recent events, whereby “habits” are 
maintained merely due to the continued repetition of 
recently-executed behaviours. This alternative view would 
suggest no observable differences between overtrained 
and recently-acquired contingencies. Our data are 
consistent with a more intermediate view: both lasting 
influences of older experiences and marked sensitivity to 
recent ones.

Some influences of older events were clearly observed. 
For instance, in all three experiments there was a larger 
contingency effect and/or an overall main effect speeding 
for Set A (overtrained) stimuli relative to newly-introduced 
Set B or C stimuli. This is also consistent with past findings 
that contingency effects, while acquired quite quickly, do 
tend to slowly increase with further training (Schmidt 
& De Houwer, 2016b). Similarly, contingency effects 
remained significant within the 180-trial unlearning 
phase, indicating persistence of a contingency when the 
regularity no longer applied. On the other hand, the 

Figure 8: Experiment 3 mean response times (aggregated 
across sub-blocks) with standard errors for old high, new 
high, and low contingency items for the overtrained 
(Set A) and recently-introduced (Set D) stimuli during 
counterconditioning.
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contingency was not “stubbornly resistant” to the extent 
that no reductions in the learning effect were observed.

Perhaps most interesting was the newly-introduced 
counterconditioning phase. In all three experiments, 
the trend was for persistence of the old contingency 
effect, albeit in a reduced form, despite the preceding 
180-trial unlearning phase and the introduction of a 
new, competing contingency. There was also a trend 
for acquisition of the new contingency effect in the 
counterconditioning phase, however. In Experiment 1, 
there was a significant interaction between the old and 
new contingency effects. In particular, while the new 
contingency effect was not robust (though numerically 
trending) and the new contingency effect was significant 
for the recently-introduced stimuli (Set D), the reverse 
was true for overlearned stimuli: The old contingency 
effect persisted and the newly-changed contingency was 
non-significant (though again trending in the correct 
direction). This pattern did not replicate in Experiments 2 
and 3, however, where both the old and new contingencies 
influenced performance regardless of set. The reason for 
this discrepancy is uncertain. The significant interaction in 
Experiment 1 could have been a Type 1 error. Alternatively, 
a true but very small effect might exist that was detected 
only in one experiment. Indeed, as a general trend 
“hints” in favour of some overtraining effect were rather 
systematically observed in our experiments, but only 
some findings were significant and no overtraining effects 
were overwhelmingly large. Globally, then, the results are 
again not consistent with the strong idea that overtrained 
stimuli are inflexibly resistant to new learning: Some 
lasting influence of older events is observed, but new 
contingencies are picked up even for overtrained stimuli.

It is further noteworthy that there were a number of 
contrasts between overtrained and recently-acquired 
stimuli that were performed (i.e., two main ones per 
phase if we consider both the main effect of set and the 
interaction between set and contingency). Only some of 
these came out as significant and most of the observed 
differences were not substantial. We also note that we 
did not make corrections for multiple comparisons and 
there was clearly some noise and inconsistencies across 
the many comparisons, so more targeted replications 
of specific findings seem warranted. However, we do 
note that all significant cross-set comparisons were in 
the direction predicted by the eventually-stable-habit 
view. Still, any lasting influences from overtraining seem 
rather underwhelming. It is perhaps important to stress 
that these findings were not, however, unclear, as the 
results revealed significant effects that are inconsistent 
with each of the “extreme” positions we discussed in 
the Introduction. For instance, the eventually-stable-
habits view clearly should have predicted, for overtrained 
stimuli: (a) no reduction in contingency effects with 
unlearning (but this was observed), (b) no acquisition 
of new contingencies during counterconditioning (but 
this was also observed). Similarly, the results also are not 
consistent with the extreme view that learning is myopic 
to only very recently occurring events, as the persistence 
of the old contingency through unlearning and 
counterconditioning clearly demonstrates. Thus, robust 

effects argue against both extreme views and therefore 
suggest that a more moderate view is necessary.

Collectively, the results of the present three experiments 
are consistent with the idea that both frequency and 
recency influence the quality of representations (in this 
case, representations of contingency; see Moors, 2016). 
Our results might be coherently explained by one high 
learning rate memory mechanism (e.g., Logan, 1988; 
Schmidt et al., 2016). According to this view, the individual 
impact of a given experience on current behaviour is related 
to how long ago the past experience occurred. Recently-
experienced events have a particularly potent influence on 
behaviour, whereas older and older memory traces have 
increasingly smaller (but non-zero) influences on current 
behaviour. This notion has often been referred to as the 
power law of practice (Logan, 1988; Newell & Rosenbloom, 
1981). The actual form of acquisition may be exponential 
(Heathcote, Brown, & Mewhort, 2000; Myung, Kim, & Pitt, 
2000), which, averaged across participants, appears more 
like a power function. In any case, the rough notion is 
illustrated in Figure 9. If the participant is, for instance, 
currently partway through a counterconditioning phase, 
then learning of a “new” contingency can be explained by 
the potent influence of recent events. However, there will 
also be continued influence of older events from the prior 
unlearning and acquisition phases, which can explain the 
persistence of an old contingency. Differences between 
overtrained (Set A) and recently-acquired (Set D) stimuli 
can be explained by the extra traces encountered for the 
former stimuli. The reason for relatively weak overtraining 
effects can similarly be explained by the decay of much 
older memory traces. Similar notions have been forwarded 
to explain skill acquisition (Logan, 1988) and repetition 
priming (Grant & Logan, 1993; Logan, 1990).

This theoretical account may also explain why more 
notable differences were observed between Set A and 
Set D stimuli during acquisition, but less clearly during 
unlearning and counterconditioning. In particular, the 
extra learning experiences for Set A stimuli were more 
recent during acquisition, but more distant in time when 
the unlearning and subsequent counterconditioning 
phases eventually began. In that vein, somewhat larger 
effects of overlearning might be observable during 
counterconditioning if the counterconditioning directly 
follows acquisition.

Related to the above discussion, the present results 
might prove informative in constraining conceptual and 
modelling accounts of learning. For instance, the Parallel 
Episodic Processing (PEP) model of Schmidt and colleagues 
(2016) has been used to simulate a range of findings from 
the colour-word contingency learning paradigm, along 
with a number of other binding, timing, attentional, and 
control phenomena. Similar to what we described above, 
the PEP stores traces of individual events and similarity-
based retrieval of these “exemplars” produces learning 
effects. It is already the case in the PEP model that 
recently-encoded events are more strongly retrieved from 
memory that older events. This allows the model to learn 
quickly and simulate (with the same mechanism) more 
transitory influences on behaviour, such as distracter-
response binding effects (Frings, Rothermund, & Wentura, 
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2007). Future modelling work, however, could aim to see 
whether the PEP (or other models) is able to simulate the 
both the lasting and dynamic adaptations to contingencies 
as observed in the present report.

The current research introduces interesting new avenues 
for future research. For instance, we observed that an 
originally-trained contingency that was acquired over two 
sessions on two days persisted through 180 unlearning trials 
and even through another 180 counterconditioning trials. 
But how much longer would this effect persist? Various 
permutations of the learning and counterconditioning 
phase lengths might clarify this issue further. Presumably, 
the new contingency will overwhelm the old contingency 
eventually, and the 180-trial counterconditioning phase 
in the current report may have simply been too short. 
Future work with longer counterconditioning phases 
might therefore explore whether an old contingency does 
eventually extinguish entirely. Similarly, it may be the 
case that the old contingency eventually does become 
stable and completely prevents acquisition of a new 
contingency. Future research might aim to extend the 
initial training over much longer durations (e.g., weeks) 
before introducing counterconditioning.

More globally, the present results might suggest that 
much of what we consider to be a habit is driven by 
recent experiences. If recent experiences are, indeed, 
more influential on the maintenance of an automatic 
behaviour than is typically assumed, then this might have 
interesting implications. Although certainly speculative, 
to change automatic behaviour (e.g., undesirable habits), 
it might suffice to force a change in a limited number 
of recent experiences. That is, the default response to 
a stimulus could change even if only the most recent 
experiences are different from many old ones. At the 
same time, our data show that old memory traces will 

persist to some degree, which could explain relapse of 
old automatic behaviours, including undesirable habits. 
Such relapse might be particularly likely as time elapses. 
In this case, events inconsistent with the original default 
response (e.g., counter-habitual behaviours) will lose 
their advantage of recency so that traces of old automatic 
behaviours can resurface. This is related to explanations 
for spontaneous recovery, that is, the re-emergence of 
a previously-extinguished behaviour (Briggs, 1954). It 
would thus be interesting to rerun our studies but add 
a delay between counterconditioning and a subsequent 
unlearning test phase. It might be the case that the old 
contingency resurfaces more strongly with delay (Pavlov, 
1927).

Relatedly, two of our three experiments included two 
days of training. This was largely done with the aim of 
breaking up the lengthy training. However, the two-
day training did involve an intermediate night of sleep 
reconsolidation. Future work might explore the role of 
consolidation more directly. Some existing work already 
suggests that consolidation does play some role in the 
strength of learning. For instance, in Geukes, Gaskell, 
and Zwitserlood (2015) trained participants with novel 
words and colour words as pairs and observed Stroop-like 
(or learning) effects when intermixed with colour word 
distracters. Without colour word distracters, however, 
the Stroop effect was only observed on Day 2 (i.e., after 
consolidation). Similarly, the role of sleep or simply time 
in consolidation could be explored (Lindsay & Gaskell, 
2013).

Another factor of interest that might be interesting 
to explore in the current design is context dependency. 
It is likely that, in real life, automatic (e.g., habitual) 
behaviours have been emitted in many contexts whereas 
recent (e.g., counter-habitual) behaviours inconsistent 

Figure 9: An illustration of a power law influence on behaviour. Recently-encoded events have a particularly strong 
influence on behaviour, whereas older and older memories have ever diminishing influences. In this example, the 
counterconditioning phase is marked in dark grey, the unlearning phase in light grey, and acquisition in white.
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with the original learning have been emitted in more 
restricted contexts (e.g., therapy). Also, from learning 
psychology we know that first learning is less context 
dependent than new learning (for a review, see Bouton, 
2004). Hence, old memory traces might have more impact 
in new contexts than in those contexts specifically used 
for unlearning or counterconditioning. To explore this 
notion with the present materials, one might therefore 
imagine introducing contextual changes, for instance, 
after counterconditioning to see whether this leads to a 
re-emergence of the old contingency.

We also remind the reader that “habit” is inconsistently 
defined in the literature (see the Introduction). Thus, 

depending on how one defines a habit, our lengthy 
acquisition phase may or may not be considered 
sufficient to establish a habit. It is similarly not clear 
whether the incidental learning effects explored in the 
present report are due to goal-free stimulus-response 
learning or whether the learning also includes goal-
directed actions. Independently of whether the absence 
of goals should be considered a defining feature of a 
habit (see De Houwer, 2019, for concerns with this 
perspective), it remains an interesting open question 
to explore in future research (e.g., by conducting 
similar studies with or without deliberate learning  
goals).

Table A1: Experiment 1 response time and error means and standard errors.

Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

1 High 612 12 607 11 5.0 0.9 5.2 1.2

Low 609 16 603 13 7.0 1.6 9.6 1.8

2 High 601 12 591 11 5.9 1.0 5.0 1.0

Low 614 14 606 14 8.1 1.5 5.5 1.4

3 High 598 12 601 13 6.9 1.2 4.6 0.9

Low 617 15 614 15 6.5 1.6 5.9 1.5

4 High 595 10 597 13 4.3 0.8 4.9 1.1

Low 621 15 625 16 6.2 1.4 4.8 1.2

5 High 598 12 610 12 4.3 0.9 6.5 1.1

Low 617 12 621 12 4.4 1.2 9.5 1.9

6 High 592 12 611 11 6.1 1.1 6.1 1.0

Low 606 14 640 17 5.7 1.5 6.7 1.6

7 High 612 12 617 13 6.1 1.0 4.5 0.9

Low 637 13 636 17 7.7 1.5 7.0 1.5

8 High 615 14 617 14 6.6 1.0 7.6 1.0

Low 632 17 634 15 6.6 1.4 7.4 1.9

9 High 631 15 622 15 6.9 1.2 3.6 1.0

Low 673 17 647 16 7.0 1.3 10.8 1.8

10 High 609 13 619 14 5.9 1.1 5.7 1.1

Low 648 15 630 14 7.3 1.7 7.4 1.7

11 High 611 14 607 13 7.0 0.9 6.1 1.1

Low 633 15 628 16 7.0 1.6 7.8 1.5

12 High 617 13 609 11 5.7 1.2 5.8 1.0

Low 662 16 635 15 7.8 1.6 8.8 2.1

13 High 607 13 619 14 6.0 1.1 5.7 1.1

Low 631 12 644 14 8.0 1.9 7.4 1.6

14 High 618 13 616 11 6.3 1.1 5.9 1.1

Low 632 16 637 14 7.7 1.5 7.7 1.6
(Contd.)
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

15 High 604 15 607 13 6.0 1.0 4.3 0.8

Low 622 11 640 17 11.6 1.8 8.5 1.8

16 High 622 12 637 13 6.2 1.2 8.3 1.4

Low 609 14 624 15 7.4 1.7 8.1 1.7

17 High 610 12 624 14 6.6 1.2 5.3 1.0

Low 615 15 621 15 6.6 1.5 8.4 1.9

18 High 603 13 620 14 6.3 1.3 5.6 1.0

Low 636 17 663 18 8.9 1.8 6.3 1.3

19 High 610 14 619 15 5.6 1.2 5.9 1.3

Low 633 15 651 16 11.6 2.2 9.1 2.0

20 High 617 13 609 12 6.6 1.3 5.9 1.0

Low 637 18 638 17 7.0 1.7 11.0 1.7

21 High 537 9 555 10 2.7 0.8 2.5 0.8

Low 553 9 558 10 2.6 0.9 1.8 0.8

22 High 543 7 554 9 3.9 0.8 3.9 0.9

Low 569 12 573 11 5.2 1.2 4.8 1.4

23 High 552 11 552 10 3.7 0.8 2.8 0.7

Low 559 9 560 12 4.8 1.3 5.5 1.4

24 High 549 8 561 10 3.4 0.8 5.1 1.1

Low 580 14 576 13 8.0 2.0 8.1 1.9

25 High 571 12 576 11 5.2 1.1 5.8 1.0

Low 594 12 584 13 7.3 1.4 6.6 1.8

26 High 559 8 574 10 2.7 0.7 5.2 1.0

Low 575 11 580 10 6.7 1.4 5.9 1.2

27 High 558 12 586 11 4.1 0.8 3.9 1.0

Low 592 15 582 12 3.0 1.0 8.4 1.9

28 High 571 12 582 13 5.4 0.9 3.6 0.8

Low 609 17 576 11 7.0 1.5 6.2 1.6

29 High 561 11 586 12 3.6 0.9 4.8 0.9

Low 602 14 592 12 8.4 1.8 6.3 1.2

30 High 567 11 581 12 4.5 1.1 4.8 1.0

Low 583 15 600 13 6.6 1.4 5.2 1.3

31 High 574 15 562 11 5.6 1.2 5.5 1.4

Low 589 12 593 12 5.9 0.8 5.2 1.1

32 High 568 13 582 14 4.8 1.2 5.9 1.3

Low 605 12 594 13 4.2 0.8 6.3 1.0

33 High 594 14 570 13 4.0 1.3 8.1 1.5

Low 589 13 596 11 6.3 1.0 5.4 1.1

34 High 574 12 584 12 4.0 1.4 4.0 1.2

Low 591 12 595 10 6.4 1.0 8.1 1.4

(Contd.)
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

35 High 584 15 593 15 4.4 1.4 5.2 1.3

Low 597 12 596 13 7.0 1.0 7.0 1.4

36 Old 581 16 612 19 7.2 2.3 5.7 1.9

Low 609 17 596 18 11.5 2.6 8.6 2.4

New 604 13 590 11 5.7 1.0 6.2 1.1

37 Old 571 17 586 15 6.5 2.0 5.0 1.8

Low 591 15 611 18 7.2 2.7 9.4 2.7

New 599 14 589 12 6.2 1.3 4.7 1.0

38 Old 575 18 611 20 5.0 1.8 5.8 2.1

Low 590 15 596 18 5.7 1.9 8.6 2.4

New 588 14 574 12 5.8 0.9 8.5 1.3

39 Old 585 16 590 13 3.6 1.5 2.2 1.2

Low 593 18 616 24 7.2 2.3 6.5 2.0

New 588 12 582 10 6.8 1.0 6.3 1.1

40 Old 576 13 588 17 3.6 1.5 9.3 2.5

Low 607 19 597 14 7.2 2.0 4.3 2.0

New 588 11 573 11 6.3 1.2 4.5 0.9

Table A2: Experiment 2 response time and error means and standard errors.

Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

1 High 604 11 599 11 2.3 0.7 4.4 0.8

Low 618 12 605 11 4.5 1.2 4.0 1.2

2 High 590 9 600 10 2.7 0.5 3.9 0.9

Low 607 12 609 10 3.1 0.9 3.1 0.9

3 High 598 10 599 11 3.4 0.8 3.0 0.5

Low 617 12 604 11 3.4 1.0 2.3 0.8

4 High 603 10 597 10 4.0 0.9 3.0 0.7

Low 625 12 592 10 5.1 1.2 5.1 1.2

5 High 604 10 600 10 4.0 0.8 4.7 0.8

Low 612 10 619 13 4.0 0.9 7.3 1.3

6 High 584 9 580 9 2.6 0.6 4.4 0.7

Low 607 12 609 10 5.1 1.1 5.1 1.1

7 High 609 11 605 10 4.4 0.9 4.7 0.8

Low 613 12 606 12 7.4 1.2 4.8 1.2

8 High 611 12 605 10 3.5 0.6 3.7 0.8

Low 631 11 616 10 5.2 1.1 4.8 1.2

9 High 587 9 603 10 3.8 0.8 5.5 0.9

Low 609 11 633 11 7.3 1.4 4.8 1.1
(Contd.)
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

10 High 598 10 607 9 5.4 0.9 4.4 0.9

Low 615 12 626 9 5.9 1.1 6.4 1.3

11 High 582 10 600 10 4.2 0.7 4.5 0.7

Low 617 13 608 11 3.7 1.0 6.5 1.5

12 High 607 9 609 11 3.8 0.7 3.3 0.7

Low 647 12 626 13 4.3 1.0 5.7 1.1

13 High 614 11 614 10 4.9 0.9 3.6 0.9

Low 621 11 633 11 4.1 1.1 6.5 1.3

14 High 601 9 606 11 4.6 0.8 4.3 0.9

Low 618 12 639 12 9.0 1.7 6.4 1.4

15 High 603 9 608 8 3.2 0.7 3.6 0.8

Low 633 14 632 11 7.9 1.6 4.5 1.1

16 High 586 9 606 10 4.4 0.8 4.7 0.8

Low 620 11 612 10 6.6 1.5 5.6 1.2

17 High 598 10 619 9 4.3 0.9 4.5 0.8

Low 619 12 612 9 6.4 1.5 6.1 1.5

18 High 598 11 607 10 4.4 0.7 4.3 0.9

Low 633 11 627 13 6.5 1.4 4.6 1.1

19 High 589 9 606 9 3.7 0.6 5.9 1.0

Low 636 10 636 13 4.9 1.1 5.9 1.2

20 High 603 9 612 11 5.4 0.9 5.7 1.0

Low 636 12 622 11 6.2 1.3 7.1 1.3

21 High 586 9 578 10 2.5 0.9 6.7 1.4

Low 590 8 602 9 6.7 0.9 4.5 0.8

22 High 616 11 617 12 5.1 1.2 5.4 1.2

Low 618 10 625 10 5.4 0.9 4.9 0.8

23 High 619 12 622 12 4.8 1.1 5.4 1.2

Low 621 10 627 9 4.9 0.9 6.0 0.9

24 High 615 11 603 11 4.5 1.3 4.2 1.0

Low 621 9 610 9 4.8 0.7 4.6 0.8

25 High 614 12 610 12 4.5 1.1 6.3 1.3

Low 610 10 619 11 6.2 0.9 4.0 0.6

26 Old 623 19 598 13 3.3 1.3 5.0 1.5

Low 611 14 614 13 3.9 1.4 5.0 1.5

New 599 10 604 11 4.5 0.9 3.7 0.7

27 Old 612 15 606 14 6.1 1.7 5.0 1.5

Low 647 17 643 16 6.6 1.7 7.2 1.9

New 623 10 614 9 5.2 1.0 4.4 0.8

28 Old 626 18 615 18 6.1 1.8 3.9 1.6

Low 624 14 624 16 6.4 1.9 4.4 1.7

New 620 11 608 12 5.8 1.0 5.3 0.9
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

29 Old 618 14 630 15 2.2 1.1 5.5 1.8

Low 615 14 624 15 9.4 2.2 5.0 1.5

New 610 9 607 10 4.7 0.8 4.2 0.7

30 Old 609 13 595 14 4.4 1.5 3.9 1.4

Low 643 15 605 15 5.0 1.5 3.9 1.6

New 607 11 604 10 6.5 1.0 4.6 0.7

Table A3: Experiment 3 response time and error means and standard errors.

Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

1 High 592 11 606 11 2.6 0.7 3.8 0.9

Low 606 13 630 15 4.7 1.2 4.7 1.3

2 High 590 10 587 10 4.0 0.9 4.3 0.9

Low 608 12 595 11 6.5 1.6 5.9 1.2

3 High 587 11 590 11 3.3 0.8 4.3 0.8

Low 602 13 608 12 5.1 1.3 6.7 1.4

4 High 593 11 589 11 4.6 1.0 4.6 1.0

Low 615 13 623 13 6.7 1.4 6.8 1.4

5 High 596 11 600 11 5.3 0.8 3.3 0.7

Low 633 12 614 11 5.2 1.1 8.1 1.4

6 High 589 11 577 9 3.1 0.9 3.5 0.9

Low 607 13 609 13 4.8 1.2 5.1 1.2

7 High 594 10 591 12 4.8 0.9 4.6 1.0

Low 612 14 621 12 4.8 1.3 6.8 1.5

8 High 588 11 583 10 5.8 1.2 5.2 1.0

Low 609 13 618 13 5.5 1.3 4.4 1.2

9 High 586 9 584 10 4.4 0.9 5.4 0.9

Low 631 14 600 12 6.4 1.5 5.5 1.2

10 High 612 11 598 10 5.2 1.0 5.8 1.0

Low 636 14 633 16 7.4 1.7 5.0 1.2

11 High 584 12 576 12 4.1 0.8 5.8 1.1

Low 600 13 620 12 5.8 1.2 6.7 1.6

12 High 583 9 595 11 5.0 1.0 4.3 0.9

Low 619 14 631 16 6.5 1.4 8.1 1.6

13 High 590 10 594 11 5.4 0.8 5.7 1.0

Low 643 15 603 12 10.4 1.8 5.1 1.2

14 High 593 11 591 9 4.7 1.0 3.3 0.7

Low 636 13 649 16 5.8 1.3 7.3 1.4

15 High 593 10 590 11 5.6 1.0 5.5 1.1

Low 613 10 631 14 7.6 1.5 7.5 1.5
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

16 High 583 9 589 11 4.5 0.9 4.9 0.9

Low 590 11 602 13 7.2 1.2 7.5 1.5

17 High 601 9 593 11 3.3 0.6 5.0 0.9

Low 646 16 637 10 5.8 1.4 6.5 1.4

18 High 603 11 597 11 2.9 0.7 5.2 0.8

Low 631 13 626 13 6.1 1.3 8.5 1.3

19 High 589 12 592 9 5.3 0.9 4.7 1.0

Low 641 13 605 11 5.8 1.5 7.2 1.3

20 High 586 9 594 9 4.9 0.9 5.8 1.0

Low 638 13 621 12 4.7 1.2 8.4 1.7

21 High 578 12 581 9 2.6 0.7 5.5 1.1

Low 605 12 608 13 4.8 1.1 7.1 1.5

22 High 584 11 591 11 4.4 0.8 5.3 0.9

Low 604 16 614 14 5.9 1.3 6.8 1.4

23 High 592 10 589 11 5.0 1.1 5.1 1.0

Low 606 11 621 14 9.1 1.8 6.1 1.3

24 High 590 11 594 9 3.9 0.9 5.1 1.1

Low 604 12 621 15 6.2 1.3 8.5 1.6

25 High 581 11 588 10 5.4 0.9 4.8 1.0

Low 604 10 612 11 5.8 1.2 5.1 1.3

26 High 568 9 577 11 4.5 0.9 7.5 1.0

Low 587 12 582 11 3.8 1.0 6.5 1.4

27 High 591 11 583 9 5.1 1.0 6.3 1.3

Low 601 10 621 15 6.4 1.6 5.1 1.4

28 High 579 11 590 11 5.0 1.0 5.7 1.0

Low 607 12 599 13 7.5 1.5 5.7 1.5

29 High 580 9 602 11 4.9 0.9 4.8 1.0

Low 629 13 612 13 8.7 1.7 8.0 1.9

30 High 603 11 592 10 5.2 1.1 4.1 0.9

Low 621 15 631 15 9.1 1.6 7.7 1.7

31 High 524 8 522 8 4.9 1.0 2.6 0.7

Low 540 8 544 11 4.8 1.1 5.8 1.2

32 High 520 8 528 8 3.2 0.8 3.6 0.8

Low 550 10 556 10 6.7 1.5 5.8 1.4

33 High 545 9 530 8 3.9 0.7 4.6 1.0

Low 554 9 547 9 4.1 1.0 4.7 1.4

34 High 538 8 543 11 2.0 0.6 2.8 0.7

Low 552 13 566 11 8.1 1.6 4.1 1.0

35 High 537 8 540 9 3.0 0.8 3.1 0.7

Low 567 10 581 12 4.1 1.1 7.4 1.4

36 High 539 10 535 8 3.7 0.9 3.4 0.8

Low 561 11 558 11 6.1 1.3 5.8 1.3
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

37 High 542 9 545 9 4.6 1.0 4.4 1.2

Low 582 11 563 10 5.4 1.3 3.8 1.4

38 High 543 9 539 9 2.8 0.8 3.6 0.8

Low 576 12 566 10 7.0 1.7 7.4 1.7

39 High 539 9 542 8 3.7 0.8 4.1 1.0

Low 572 11 570 10 5.7 1.8 5.4 1.3

40 High 543 10 546 10 3.0 0.7 4.8 0.9

Low 576 12 577 12 4.7 1.3 8.8 1.8

41 High 535 9 520 9 4.1 0.8 6.0 1.2

Low 566 12 582 12 7.1 1.3 5.4 1.3

42 High 554 9 557 8 2.9 0.8 4.1 1.0

Low 582 12 582 12 7.4 1.5 6.4 1.4

43 High 557 9 555 8 4.1 0.7 3.9 0.9

Low 589 10 569 13 3.7 1.0 7.2 1.5

44 High 553 9 545 9 2.8 0.7 4.3 0.9

Low 590 11 585 11 5.4 1.2 6.1 1.3

45 High 549 10 555 11 3.6 0.8 3.8 0.9

Low 594 13 596 12 9.1 1.9 7.4 1.6

46 High 563 11 574 10 2.6 0.7 5.9 1.0

Low 590 11 585 11 7.8 1.5 8.4 1.5

47 High 543 9 577 9 5.3 1.2 5.3 1.1

Low 588 12 588 13 9.1 1.5 2.8 1.0

48 High 564 11 578 10 3.6 0.8 6.1 1.1

Low 601 13 586 12 7.0 1.6 5.7 1.3

49 High 562 10 565 10 4.5 0.8 4.6 0.9

Low 601 15 578 12 8.6 1.6 6.4 1.3

50 High 569 10 577 10 5.1 1.0 4.5 0.9

Low 588 11 598 12 8.8 1.5 7.8 1.5

51 High 562 12 568 14 4.1 1.2 5.5 1.4

Low 584 9 585 10 7.5 1.4 6.6 1.2

52 High 566 12 577 13 5.1 1.3 4.4 1.2

Low 585 8 596 10 5.4 0.9 6.0 1.3

53 High 566 10 572 9 2.7 0.9 7.2 1.9

Low 595 11 593 10 7.5 1.2 5.2 1.0

54 High 564 12 579 14 4.4 1.5 5.1 1.5

Low 586 11 586 10 7.9 1.1 7.5 1.3

55 High 570 12 581 12 4.4 1.1 5.4 1.2

Low 585 10 593 9 6.5 1.1 4.9 1.1

56 Old 541 13 562 14 3.6 1.6 8.0 2.4

Low 594 14 562 13 6.6 2.1 5.3 2.0

New 573 9 573 10 6.5 1.0 5.5 1.1
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Block Contingency Response Times Error Percentages

Set A Sets B–D Set A Sets B–D

Mean SE Mean SE Mean SE Mean SE

57 Old 574 14 578 15 2.6 1.3 3.3 1.4

Low 593 15 597 18 7.6 2.3 6.6 2.1

New 581 9 599 10 6.0 1.2 5.8 1.2

58 Old 580 15 566 15 2.7 1.6 7.6 2.1

Low 574 12 617 18 5.3 2.2 4.0 1.5

New 584 11 573 10 6.5 1.0 4.8 0.9

59 Old 592 19 590 14 6.6 1.9 9.3 2.3

Low 590 18 585 15 9.6 2.4 8.0 2.4

New 569 9 572 9 5.5 1.1 6.1 1.0

60 Old 588 17 574 15 6.6 1.9 4.6 1.6

Low 608 16 584 13 5.9 1.8 6.0 2.1

New 571 11 578 10 5.3 1.1 7.5 1.2
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