
https://doi.org/10.1177/1747021820906397

Quarterly Journal of Experimental 
Psychology
2020, Vol. 73(5) 739–761
© Experimental Psychology Society 2020
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1747021820906397
qjep.sagepub.com

Introduction

One of the basic requirements of the human cognitive sys-
tem, if not the most basic, is our ability to learn regularities 
between events in our environment (Allan, 2005; Beckers 
et  al., 2007; Shanks, 2010). Contingency learning is the 
basic building block for causal learning, knowledge acquisi-
tion, and the formation of the expectancies that make our 
world feel ordered rather than chaotic. Also fundamental, 
but perhaps no different, is our ability to bind our experi-
ences into memory traces for later retrieval (Hommel, 1998, 
2004; Hommel et al., 2001; Logan, 1988). Especially recent 
experiences can have a particularly potent influence on our 
behaviour (Grant & Logan, 1993). The present report will 
put to the test a unitary view of contingency learning and 
transient stimulus-response (S-R) binding, which argues 
that learning and binding effects are ultimately the result of 

the same high-learning rate memory storage and retrieval 
processes.

Consider two paradigms, each developed for the purpose 
of studying (seemingly) two different things. The first is the 
colour-word contingency learning paradigm (Schmidt et al., 
2007; for related procedures, see Carlson & Flowers, 1996; 
J. Miller, 1987; Mordkoff, 1996; Mordkoff & Halterman, 
2008). In this paradigm, participants respond to the print 
colour of a word on each trial as quickly and accurately as 
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possible. In meaning, the words are unrelated to the colours 
(e.g., unlike a Stroop task; Stroop, 1935). However, each 
word is presented most often in one colour, as illustrated in 
Table 1. For instance, “find” might be presented most often 
in blue, “walk” most often in red, and “make” most often in 
green. These contingencies between the distracting words 
and colour responses are learned by participants, as indi-
cated by robustly faster and more accurate responses to 
high-contingency trials (e.g., “find” in blue) relative to low-
contingency trials (e.g., “find” in red). Critically, this para-
digm is typically used as a method to study the learning of 
contingent regularities across many events (i.e., learning of 
which word tends to go with which colour response).

Next, consider a different sort of paradigm. Although 
there are several variants of S-R binding (or feature integra-
tion) procedures (Hommel, 1998), distracter-response bind-
ing paradigms are of particular interest for the present 
purposes (Frings et  al., 2007; Rothermund et  al., 2005). 
Again, participants respond to a target (e.g., print colour) 
while ignoring a distracter (e.g., word). Many designs even 
closely mirror contingency learning designs (i.e., similar 
stimuli, trial structure) with the notable exception that dis-
tracters are not correlated with targets/responses (e.g., each 
distracting word is presented equally often in all colours/
with all responses). Instead, researchers assess performance 
on the second of two trials as a function of whether (a) the 
distracter repeats (e.g., “find” followed by “find”) or 
changes (e.g., “find” followed by “walk”), and (b) the target 
colour (and therefore response) repeats (e.g., blue followed 
by blue) or changes (e.g., blue followed by red). The stand-
ard finding is illustrated in Figure 1. In particular, partici-
pants are faster to respond when the distracter repeats and 
the (target) response repeats (DR-RR; sometimes termed a 
complete repetition), relative to when the distracter changes 
and the response repeats (DC-RR; or partial response repe-
tition). However, participants are (a little) slower to respond 
when the distracter repeats and the response changes (DR-
RC; or partial word repetition), relative to when the dis-
tracter and response both change (DC-RC; or complete 
alternation). Globally, response repetitions are faster than 
response changes, but the Stimulus Relation × Response 
Relation interaction (Figure 1) is most crucial.

These binding effects are typically interpreted in terms 
of short-term event files (Hommel et  al., 2001) that are 

created in short-term/working memory which are often 
assumed to “disintegrate” shortly after being created (Stoet 
& Hommel, 1999). The basic idea of stimulus-response 
binding is that the repetition of a stimulus (e.g., distracting 
word) leads to retrieval of the recently associated response 
that was executed on the previous trial. This can lead to 
facilitation if a response repetition is needed (DR-RR). 
However, this same similarity-based retrieval can lead to 
retrieval interference if a new response is required (DR-
RC). For instance, after seeing “find” in blue, a second 
presentation of “find” will lead to a retrieval bias in favour 
of a blue response. However, if the current stimulus is 
“find” in red, then the retrieval bias towards a blue response 
leads the participant astray (i.e., the retrieved and thus 
expected blue response competes with selection of the 
appropriate red response).

Interestingly, the binding and contingency learning lit-
eratures have not had much of a history in communicating 
with each other (but see Colzato et al., 2006; Hommel & 
Colzato, 2009), at least until very recently (e.g., Giesen & 
Rothermund, 2015; Moeller & Frings, 2017a). Although 
not uncommon for researchers to assume that binding is 
related to learning (e.g., Giesen et  al., 2012; Horner & 
Henson, 2011; Logan, 1988; Schnyer et al., 2007), viewing 
binding either as the first step of long-term learning or 
simply as single trial learning, this notion is rarely explored 
directly and there are many other researchers that (implic-
itly or explicitly) view binding and learning as two disso-
ciable processes (Frings & Rothermund, 2011; Giesen & 
Rothermund, 2014; Herwig & Waszak, 2012; Moeller & 
Frings, 2017b).

Distinct mechanisms view

Of the limited number of considerations of the potential 
relationship between binding and contingency learning, 

Table 1.  Example contingency manipulation.

Colour Word

Find (%) Walk (%) Make (%)

Blue 80 10 10
Red 10 80 10
Green 10 10 80

Example mapping only. Which word is presented most often with 
which colour is different for each participant.

Figure 1.  Typical results pattern indicating retrieval of 
distracter-response bindings.
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some researchers have suggested that the two are com-
pletely different, which can be termed a distinct mecha-
nisms view. For instance, Colzato and colleagues (2006; 
see also, Hommel & Colzato, 2009), who provided the first 
detailed exploration of the potential relationships between 
learning and binding, suggested that learning effects are 
due to slow updating of association weights in long-term 
memory, whereas binding effects are due to temporary 
event files created (and swiftly destroyed) in short-term 
memory. They do not argue that learning and binding are 
completely unrelated to each other, but do argue that the 
processes that bring about learning and binding effects are 
quite distinct. The focus of their work, however, differs in 
important respects from the main research question we are 
pursuing here (e.g., they investigate S-S bindings, whereas 
we are mostly interested in studying the relation between 
associations and binding with regard to S-R connections). 
Methodologically, they investigated moderating effects of 
established associations on binding, whereas we are inter-
ested in explaining and decomposing contingency learning 
effects on the basis of episodic binding and retrieval. For 
interested readers, we provide a detailed description and 
discussion of their work in Supplementary Material A.

The primary argument for distinct mechanisms of 
Colzato and colleagues (2006; see also, Hommel & 
Colzato, 2009) was that contingency and binding effects 
did not interact with each other. In other words, the bind-
ing interaction was just as large for high contingency as for 
low-contingency stimuli. One might have anticipated that 
if learning and binding were due to the same mechanism, 
then some interaction might be observed between learning 

and binding. However, this is not necessarily the case. 
Indeed, as will be described in the “Teasing apart learning 
and binding” section (see Table 2 and Figure 2), a single 
mechanism can produce pure additivity. Relatedly, effects 
due to distinct mechanisms need not be additive, either. 
Supplementary Material A describes their studies in fur-
ther detail and expands further on why an additive rela-
tionship between learning and binding does not necessarily 
entail distinct mechanisms. In that vein, the present report 
will take an alternative approach of measuring the influ-
ence of bindings on contingency effects directly.

Unitary mechanism view

Contrary to the distinct mechanisms view discussed above, 
Schmidt et al. (2016) demonstrated how binding and learn-
ing effects could be, in principle, two consequences of the 
same learning process(es). This will be referred to as the 
unitary mechanism view. It may be important to stress up 
front what we do and do not mean by a “unitary mecha-
nism.” We do not mean to make the strong claim that there 
is only one process responsible for learning/binding or, 
even further, that this one process is supported by a single 
brain area. Rather, the notion is that the effects we study in 
learning and binding procedures may result from the same 
acquisition process(es). The conceptual point that learning 
and binding might be long- and short-term consequences 
of the same acquisition processes was made with the 
Parallel Episodic Processing (PEP) model (Schmidt, 
2016a, 2016b, 2018), which is similar in concept to other 
episodic/exemplar/instance accounts of memory (e.g., 

Table 2.  The frequency of different stimulus-response (S-R) binding trial types for high- and low-contingency trials with an 80% 
contingency.

High-contingency trials Low-contingency trials Type of S-R 
relation
Trial n − 1 → 
Trial n

Previous trial (n − 1) Current trial (n) Previous trial (n − 1) Current trial (n)

Stimulus Frequency (%) Stimulus Stimulus Frequency (%) Stimulus

 Find 26.6  Find Find 3.3 Find DR-RR

Walk
Make

6.6  Find  Walk
Make

30 Find DC-RR

Find 6.6  Find  Find 30 Find DR-RC
Find Find

 Walk 60  Find Walk 36.6 Find DC-RC
make Make
Walk Walk
 Make  Make

DR-RR: distracter repetition, response repetition; DC-RR: distracter change, response repetition; DR-RC: distracter repetition, response change; 
DC-RC: distracter change, response change.
Notably, the easier DR-RR and DC-RC trials are more frequent for high-contingency trials, and the harder DC-RR and DR-RC trials are more 
frequent on low-contingency trials. High-contingency pairings are marked with an arrow to help conceptualise why these binding frequencies are 
unbalanced. See electronic version of this article for a colour table.
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Hintzman, 1984, 1986, 1988; Logan, 1988; Medin & 
Schaffer, 1978; Nosofsky, 1988a, 1988b; Nosofsky et al., 
2011; Nosofsky & Palmeri, 1997). The model also takes 
heavy inspiration from the work of Hommel on “event 
files” (e.g., Hommel, 1998; Hommel et al., 2001), which 
may even be viewed as equivalent to exemplars if the 
influence of event files are assumed to be more lasting (for 
a detailed discussion, see Hommel, 1998).

In an exemplar store, each experienced event is encoded 
as an episodic trace in memory. On presentation of a new 
stimulus, memory traces are retrieved to the extent that 
they are similar to the current input. For instance, presenta-
tion of “find” in blue will lead to retrieval of memories of 
trials in which the word “find” was presented, memories of 
trials in which the colour blue was presented, and espe-
cially strong retrieval of trials in which “find” in blue was 
presented. Such a model can explain contingency learning 
effects. For instance, as “find” was presented most often in 
blue, most memories of the stimulus “find” will point to a 
blue response. This will speed responding if this high-con-
tingency response (blue) does need to be made, but not if 
another, low-contingency response (e.g., red) is required.

There is also a retrieval-induced decay in the PEP 
model, such that older and older episodes have less and 
less influence on memory retrieval. This also means that 
recently encoded events have a particularly strong influ-
ence on retrieval (for a similar notion, see Grant & Logan, 
1993; see also, Salasoo et al., 1985; Sloman et al., 1988). 
Thus, if “find” was just presented in red, then re-presenta-
tion of “find” will lead to some bias towards a red response, 
due to retrieval of recently encoded memory traces (which, 

in the model, are nothing else than short-term “bindings”). 
On the performance level, retrieval of short-term bindings 
will produce the following effects: (a) a benefit to response 
speed if the repeated word was just presented with the 
same colour response that is currently required (DR-RR), 
compared to colour repetition trials without word repeti-
tion (DC-RR). (b) A small cost if the repeated word was 
just presented with a different colour response than the  
one that is currently required (DR-RC), compared to col-
our change trials without word repetition (DC-RC; see 
Figure 1). Together, these produce the interaction that we 
normally describe as the binding effect. Of course, the 
model will be influenced by numerous traces of the word, 
allowing for learning of contingent regularities, but will 
also be impacted by recently occurring events. Indeed, the 
same model with one learning rate was able to simulate 
both binding and contingency effects (along with a range 
of other findings) using just one mechanism (Schmidt 
et al., 2016). Depending on how one looks at it, the notion 
is either (a) binding effects are a short-term consequence 
of learning or (b) learning effects are a long-term conse-
quence of many accumulated bindings. “Binding” and 
“learning” in this conceptualisation are the same thing. Of 
course, these computational modelling results only dem-
onstrate that one mechanism could in principle account for 
both learning and binding effects, but it remains to be seen 
whether empirical results support this position.

Whether or not contingency effects can be solely 
explained by many individual bindings (and whether bind-
ing effects can be explained as an exclusive consequence of 
learning) is an open question. Some experimental evidence 
suggests the contrary. Of particular interest are a recent 
series of studies by Moeller and Frings (2017a; see also 
Herwig & Waszak, 2012). In their procedure, the target was 
a letter presented at fixation and distracters were other let-
ters presented either to the left and right (horizontal) or 
above and below (vertical) the target letter. In a contin-
gency learning block, distracting letters were predictive of 
the target letter. The contingency effect was roughly the 
same for horizontally and vertically arranged distracters. In 
a binding block, there was no contingency between dis-
tracters and targets. The distracter-response binding effect 
was robustly larger with horizontally arranged distracters. 
They interpreted this as indicating that binding of distract-
ers to responses only occurs with the word-like horizontal 
arrangement of letters, whereas vertically oriented distract-
ers are filtered out. However, they posited that contingency 
learning processes are able to capitalise on any regularity. 
These results seem to argue against a unitary, one mecha-
nism view of binding and learning. On the other hand, a 
unitary mechanism view might still be able to explain these 
results if it is additionally assumed that contingent atten-
tional capture (see Chun & Jiang, 1998; Cosman & Vecera, 
2014; Schmidt, 2014) of the (normally filtered) vertically 
arranged distracters occurs in the contingency block due to 

Figure 2.  Illustration of how bindings can produce a 
contingency effect. Because the binding conditions are not 
uncorrelated with contingency, coding for binding effects will 
produce a reduced remaining contingency effect (difference 
between dashed lines) relative to when the distinction between 
binding conditions is ignored (difference between bars in 
central plot). Note that the dashed lines correspond to the 
mean of cell means (converging arrows), whereas the bars in 
the centre plot correspond to the weighted means of the same 
(imagined) data.



Schmidt et al.	 743

the informativeness of the distracters. Future research 
might explore this notion directly.

In a second experiment by Moeller and Frings (2017a), 
contingency effects were found to be robustly larger with a 
slower task pacing (2,000 ms between trials), whereas 
binding effects were found to be larger with a faster task 
pacing (500 ms between trials). This was interpreted as 
evidence that binding effects are due to the influence of 
rapidly decaying event files, which do not survive a long 
trial interval (Frings, 2011), whereas contingency effects 
can benefit from advanced preparation time (i.e., the 
response can be anticipated to a stronger degree if the dis-
tracter appears well in advance of the target). Whether this 
pattern of results can be accommodated within a unitary 
mechanism account of learning and binding is less certain. 
Possibly, one might assume that the ever-diminishing 
impact of older and older episodes is determined not only 
by how many trials ago an event occurred (Grant & Logan, 
1993; Schmidt et al., 2010, 2016) but also the real amount 
of time elapsed (Wixted & Ebbesen, 1991; or even tempo-
ral distinctiveness; see Horoufchin et  al., 2011a, 2011b; 
Howard & Kahana, 2002). One decay function might fit 
both patterns of results (e.g., because the immediately pre-
ceding trial dominates retrieval if it was just encoded, but 
the just-encoded trace is decayed to an increasing degree 
with more separation in time from the prior trial). 
Alternatively, recently encoded events may indeed quickly 
decay by default (explaining decreased binding effects 
with delay), but distracters may be actively maintained 
after it has been learned that distracters are informative 
stimuli (explaining increased contingency effects with 
extra preparation time). Thus, reinterpretation of these 
data might be possible, but findings like these do seem to 
pose some challenges for a unitary mechanism view.

At minimum, however, a relationship between binding 
and contingency effects is logically implied by any stable 
model of memory. Whether conceptualised in terms of 
exemplars, localist associations, distributed representa-
tions, a reservoir, or otherwise (which are often mathemat-
ically equatable or at least nearly indistinguishable from 
each other; Barsalou, 1990; Kelly et al., 2017), decay in a 
memory system is required for a stable memory store (e.g., 
see Gerstner & Kistler, 2002; K. D. Miller & MacKay, 
1994; Schmidt et al., 2016) and is built into all successful 
neural nets in one way or another. For instance, when 
updating distributed association weights via backpropaga-
tion (Rumelhart et al., 1986), it is by definition the case 
that the influence of the currently experienced event will 
have a larger impact on connection weights than any single 
older event: the influence of older events (a weighted sum 
in the connection weights) is weakened to the extent that 
the newly encoded event is recorded. That is, changing 
connection weights towards what is just now being 
encoded effectively means that we must adjust away from 
what was previously encoded in the connection weights 

(i.e., proportional to the learning/decay rate of the model). 
What this means is that recently experienced events will 
have an effect on performance exceeding that of the task-
wide contingency. Conceptualised from an exemplar-
based view, the influence of each event must follow some 
form of a decay function, whereby older and older memory 
traces have smaller and smaller impacts on the current 
trial. Of course, the slope and exact shape of the function 
might vary and the strength of the encoding and/or retrieval 
of particular events might have some variability (e.g., 
flashbulb memories; Brown & Kulik, 1977), but the typi-
cal pattern should be something comparable to a power 
function (Grant & Logan, 1993; Wixted & Ebbesen, 1991).

Teasing apart learning and binding

Based on the abstract considerations in the previous sec-
tion, it is plausible to assume that binding and contingency 
effects are related, at least to some degree. Going beyond 
this basic postulate, it is additionally possible that the 
influence of bindings from previous trials provides a com-
plete account of contingency learning effects. This much 
more far-reaching proposal is based on the following con-
siderations, regarding an interdependence between bind-
ing and contingency learning effects. Specifically, the 
different types of repetitions (DR-RR, DR-RC, DC-RR, 
and DC-RC) do not occur with equal frequency on high- 
and low-contingency trials. As illustrated in Table 2, 
DR-RR trials, which are responded to extremely fast, are 
substantially more likely on high-contingency trials. This 
is for a simple reason: if “find” is presented most often in 
blue and infrequently in red, then it is much more likely 
that the word “find” was presented in blue on the previous 
trial. As such, this will match the current high-contingency 
stimulus “find” in blue (DR-RR), but will not match the 
current low-contingency stimulus “find” in red (DR-RC). 
It will be an extremely rare event for the same low-contin-
gency stimulus to repeat on successive trials. For the same 
reason, a DR-RC is much more likely on a low-contin-
gency trial (e.g., “find” in blue followed by “find” in red) 
than on a high-contingency trial (e.g., “find” in red fol-
lowed by “find” in blue).

Because DR-RR and DC-RC trials are more likely on 
high-contingency trials and DR-RC and DC-RR trials are 
more likely on low-contingency trials, binding effects can 
explain variance in the contingency effect. This is illus-
trated in Figure 2. That is, when binding factors are 
included in the regression, the participant mean high-con-
tingency response time will be the mean of the cell means 
for (high contingency) DR-RR, DC-RR, DR-RC, and 
DC-RC (i.e., each contributing 25% to the mean), as illus-
trated in the left panel of Figure 2. The same is true of 
low-contingency trials, as illustrated in the right panel of 
Figure 2. When binding is ignored, however, the partici-
pant mean high-contingency response time is effectively a 
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weighted mean, given that much more of the trials will be 
DR-RR (26.6%) or DC-RC (60%) and very few will be 
DC-RR or DR-RC (6.6% each). For low-contingency tri-
als, the relative proportion of DR-RR (3.3%) and DC-RC 
(36.6%) trials is much lower and the proportion of DC-RR 
or DR-RC trials is much higher (30% each). As illustrated 
in the centre panel of Figure 2, this produces mean high- 
and low-contingency response times (bars) that are differ-
ent from the binding-controlled means (dashed lines). 
Most notably, if the binding interaction of the standard 
form is observed, then the binding-controlled contingency 
effect is necessarily smaller than the same effect without a 
binding control. It is also important to note that in this 
example (albeit, with imaginary data) learning and binding 
are completely additive with each other. That is, the bind-
ing interaction is identical for high- and low-contingency 
trials, only with an added main effect of contingency. This 
demonstrates how a single mechanism can be consistent 
with additivity (see the “Distinct mechanisms view” 
section).

This insight has the following implications: coding for 
the bindings of the previous trial, the remaining contin-
gency effect not accounted for by prior-trial bindings 
might be reduced. Continuing this analysis “backward” 
many lags might eliminate the entirety of the contingency 
effect. However, the contingency effect will not be elimi-
nated in this way if there is an effect of learning independ-
ent of individual bindings, as the distinct mechanisms 
account must predict. That is, if a contingency effect is not 
just the summation of many previous-trial bindings and 
there is a unique (e.g., long-term memory association for-
mation) process producing learning effects, then there 
must remain a unique effect of the contingency manipula-
tion independent of individual bindings. In other words, 
the regularity produces an effect (due to learning) separate 
from that of the influence of individual trials on their own 
(due to binding). Indeed, according to this view, we should 
anticipate little influence of bindings beyond one or two 
previous trials, after which the event files are normally 
assumed to have disintegrated from working memory.

Note that the relation between binding types and con-
tingency holds not only for Trial n − 1, but for all lags. For 
instance, for the current high-contingency stimulus “find” 
in blue, it is much more likely that the identical stimulus 
pairing (“find” in blue) was presented on Trial n − 1, n − 2, 
n − 3, and so on, than a partial repetition like “find” in red. 
As such, the contingency effect can simply be the summa-
tion of many such bindings across a large number of trials. 
Or, more to the point: the (weighted) sum of binding 
effects across multiple lags simply is the contingency 
effect. A learned regularity is emergent from many discrete 
event encodings, which is the basic principle of exemplar-
based models. This is similar to the suggestion of Logan 
(1990) that repetition priming and automaticity (i.e., skill 
acquisition) are the same thing (which is, in turn, the same 

thing we propose here as an explanation of binding and 
contingency learning).

To assess this possibility, Schmidt et  al. (2010) pro-
vided a tentative analysis similar to one which we will also 
adopt here. In particular, one can encode for colour repeti-
tions, word repetitions, and (more critically) their interac-
tion at each lag for each trial (i.e., the binding interaction 
illustrated in Figure 1). Then, we can use these predictors 
in a regression on response times (see also Figure 2). If 
adding contingency as a factor to the regression explains 
further variance, then the contingency effect is not exclu-
sively due to binding biases. This analysis did reveal that 
contingency continued to explain variance, even after 
accounting for binding effects up to Trial n − 5. Furthermore, 
there were no statistically significant binding effects on 
Trials n − 2 to n − 5. The authors therefore concluded that 
there is more to the contingency effect than just a collec-
tion of binding effects at varying lags, which is inconsist-
ent with the unitary mechanism view. In fact, the conclusion 
was that the contingency effect is largely unrelated to bind-
ing, which differs significantly from the conclusions of the 
present report.

There are considerable problems with the analysis of 
Schmidt and colleagues (2010), however. Most notably, 
binding influences were only considered for Trials n − 2 to 
n − 5. Binding biases may carry over from many more tri-
als than this. Perhaps even more important, Trial n − 1 
binding biases were not considered. The particular data 
used were from a task where target colour repetitions were 
not possible by design, though word repetitions could 
occur. With this design, word repetitions (DR-RC) should 
still be more frequent on low-contingency trials than on 
high-contingency trials. Both of these problems probably 
led to an underestimation of how large of a contribution 
binding effects make to the contingency effect. On the 
reverse side, analysis of the residual contingency effect 
(i.e., the contingency effect after controlling for binding 
biases) may allow the binding factors to “steal” variance 
from a true effect of contingency. As briefly explained in 
Supplementary Material B,1 this is due to multicollinearity 
between the binding interactions and the contingency fac-
tor, which produces “omitted variable bias.” By including 
the contingency factor in the regression and assessing the 
size of the contingency beta the more lags of binding 
effects that are coded in the regression, this omitted varia-
ble bias is eliminated. This article will take a more sophis-
ticated approach to assessing the relationship between 
binding and contingency effects. Importantly, we note that 
we were not strongly motivated towards any particular 
view when beginning this work. We viewed the unitary 
mechanism notion as interesting in concept, but also saw 
reasons why it might not prove to be the whole story.

We did, however, view it as likely that binding effects 
last longer than typically assumed. This was motivated by 
the exemplar-based unitary view mentioned before: we 



Schmidt et al.	 745

should expect prior events to matter most when they were 
recent, but ever-diminishing effects also from older events. 
A priori, such biases from older events should be small 
(tapering off the older the event), but non-zero. Tapering 
effects like this should be easy to miss if trying to study the 
effect specific to one lag (e.g., n − 3), but our modelling 
approach should do a better job of revealing these tapering 
effects.

Method

Datasets

For the present analyses, we use Experiments 1a (n = 36, 
trials = 300) and 1b (n = 34, trials = 300) of Schmidt and De 
Houwer (2016), Experiment 1 (n = 62, trials = 300) and the 
control condition of Experiment 3 (n = 25, trials = 180) of 
Schmidt and De Houwer (2012b), and the single experi-
ment (n = 46, trials = 300) in Schmidt and De Houwer 
(2012a). This represents 203 individual participant data-
sets, with 57,900 observations. Trials were randomised 
without replacement in blocks of 30 in the first two stud-
ies, but randomised with replacement in the remaining 
three. All experiments were three-choice colour identifica-
tion tasks with three words as the predictive stimuli, simi-
lar to the example given in the “Introduction” section (see 
Table 1). Immediate repetitions of the target colour were 
possible in these studies. Further details of the individual 
studies can be obtained in the original reports. These stud-
ies were initially conducted to investigate questions wholly 
unrelated to binding.

Analysis procedure

The initial analysis (Analysis 1) is similar in concept to 
that in Schmidt and colleagues (2010) but improves on the 
analysis in the following ways. First, the present analysis 
draws on a much larger collection of datasets for greater 
statistical power (see the “Datasets” section). Second, the 
present analysis considers a wider window of lags, from 
Trial n (i.e., no lags considered) to n − 12. In the original 
analysis, only n − 2 to n − 5 were considered. Third, and 
perhaps most importantly, in the new analysis we assess 
the size of the contingency effect that remains as a function 
of the number of lags of binding effects considered. That 
is, we consider the size of the raw contingency effect along 
with the size of the contingency effect remaining after 
accounting for the n − 1 binding effect, the n − 1 and n − 2 
binding effect, and so on. Thus, we can visualise the func-
tion via which the contingency decreases with increasing 
lags of binding effects considered. With this, we can fur-
ther model whether the asymptote of such a function is 
zero or robustly larger than zero. That is, does the contin-
gency effect decrease towards zero as we account for more 
and more previous trial bindings (zero asymptote), or is 

there a component of the contingency effect that cannot be 
explained by the individual events alone (positive asymp-
tote)? The unitary mechanism view predicts the former. 
That is, if the contingency effect is simply an accumulation 
of binding effects from prior trials, then there should not 
be a main effect of contingency independent of the bind-
ings on their own. In contrast, the distinct mechanisms 
view predicts a robust overall effect of the task-wide con-
tingency, which will only be conflated with short-lived 
binding effects from one or two prior trials. That is, the 
contingency effect should reduce after accounting for 
binding effects from one or two trials, but should not 
decrease further by accounting for more and more prior 
trials. We will also eliminate the omitted variable bias 
described earlier.

Note also that while adding more and more factors to a 
regression (e.g., as is the case when we consider more and 
more prior trial binding effects) will, by definition, result 
in overall model fit improving. However, addition of extra 
factors does not necessarily cause the estimated impor-
tance of other factors in the model to decrease. In particu-
lar, adding a meaningless factor to a regression will 
increase the overall fit due to maximisation on random 
error (overfitting), but the other (e.g., meaningful) factors 
in the model will only be influenced randomly. Thus, the 
contingency effect will not simply decrease due to addition 
of extra binding factors unless those extra binding factors 
actually have explained true variance in the contingency 
effect. Note also that comparisons between more and less 
complex models with Akaike information criterion (AIC) 
and Bayesian information criterion (BIC; two measures of 
model fit explained in further detail just before the 
“Results” section) corrects for overfitting. Further analy-
ses will explore the influence of intervening events on 
older bindings (Analysis 2) and the influence of the last 
response that was linked to the current distracting word 
(Analysis 3), both of which will be explained in their cor-
responding analysis sections.

Data preparation and factor coding

All data analyses were performed in R 3.5.1, using the 
lmerTest 3.0-1 package for modelling (other packages: car 
3.0-2, carData 3.0-1, retimes_0.1-2, data.table_1.11.4, lme4 
1.1-17, and Matrix 1.2-14) and we use Type III sums of 
squares with Satterthwaite-corrected degrees of freedom. 
The datasets and R scripts are freely available on the Open 
Science Framework (see Note 1) or via the lead author, along 
with an Excel sheet that we used for coding the binding fac-
tors.2 First, response times less than 150 ms were removed 
and the remaining response times were then normalised with 
an inverse transform (−1,000/RT). Transformation (espe-
cially inverse) is a standard practice when using linear mixed 
effects (LME) model analyses (e.g., Andrews & Lo, 2012; 
Kinoshita et al., 2011; Kliegl et al., 2009; Masson & Kliegl, 
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2013; Schmidt & Weissman, 2016) and is required to meet 
the distributional assumptions of LME (i.e., because of the 
typical positive skew in response times). Q-Q plots con-
firmed that the inverse transform and 150 ms trim sufficiently 
normalised the data, as illustrated in Figure 3. We note that 
some have illustrated problems with analyses on inverse-
transformed data (Balota et al., 2013; Cohen-Shikora et al., 
2018; Lo & Andrews, 2015), but these concerns are not 
applicable to the present case.3 However, we did also repeat 
our analyses from Analysis 1 with non-transformed data 
using generalised linear mixed models (GLMM)4 and results 
supported the same conclusions (R scripts for these analyses 
are also included).

On each trial, contingency (high vs. low) was coded 
along with colour repetition (response repetition vs. change), 
word repetition (distracter repetition vs. change), and the 
interaction (which were coded as separate factors, with 
DR-RR and DC-RC trials as one level of the factor and 
DC-RR and DR-RC trials as the other) for each of the 12 
lags (i.e., 36 binding factors in total). All trials in which par-
ticipants failed to respond or produced an error were elimi-
nated from analyses, along with the first 12 trials for each 
participant (i.e., because these trials could not be coded 
backward to Lag n − 12). Models could then be constructed 
with an increasing number of lags coded as factors. For 
instance, Model 0 includes only the subject and item (col-
our) intercepts and contingency, with no binding predictors 
included. Model 1 includes these same factors plus the fac-
tors of colour repetition, word repetition, and the interaction 
at Lag n − 1. Each larger model adds on the binding factors 
for an additional lag (e.g., Model 12 includes the repetition 
factors for all 12 lags). The dependent variable for analyses 
on Models 0–12 (and when comparing information criteria 
between them) was current trial response times.

Slope estimation

Once we have an estimate of the contingency effect for 
each participant for each of the Models 0–12 (which, of 

course, requires a random intercept for contingency), we 
can test for the shape of the function whereby the contin-
gency effect decreases with an increasing number of previ-
ous-trial binding effects accounted for. Thus, for slope 
analyses, the (single) independent variable is lag (0–12) 
and the dependent measure is the individual participant 
response time contingency betas (i.e., low-high contin-
gency) for each lag. That is, for each participant, there is 
one contingency effect estimate per lag, where Lag 0 cor-
responds to the beta from Model 0, Lag 1 to the beta from 
Model 1, and so on. We will fit three models on the partici-
pant mean contingency effect as a function of lags consid-
ered (i.e., 0–12). The first is a simple linear model. The 
linear model is, of course, by definition false,5 but is used as 
a reference. The second model, assumed a priori to be the 
correct model (Grant & Logan, 1993; Wixted & Ebbesen, 
1991), is a power model, which fits the RT = k + a∙(lag + 1)b 
power curve (i.e., in which the contingency effect decreases 
rapidly after accounting for the first few lags, then contin-
ues to decrease at ever-diminishing rates). In this formula, 
k is the asymptote of interest (i.e., the point at which the 
contingency effect reduces towards the more lags that are 
considered). A k of zero would therefore indicate that bind-
ing effects fully account for the contingency effect. That is, 
coding for an infinite number of previous trial binding 
effects would fully eliminate a unique contribution of the 
contingency factor. This finding would support the unitary 
mechanism view. In contrast, a positive asymptote would 
suggest that there is a component of the contingency effect 
that is not attributable to merely the summation of individ-
ual-trial binding effects. This finding would be inconsistent 
with the unitary mechanism view. The third model is an 
exponential model, which fits the exponential decay func-
tion RT = k + n∙el∙lag, where k is again the asymptote. The 
exponential decay function is slightly different than the 
power function and was included as it might plausibly pro-
vide a better fit (e.g., Heathcote et al., 2000; Myung et al., 
2000), though did not. Any cross-model comparisons (for 
the slope or otherwise) are, by necessity, computed with 

Figure 3.  Q–Q plots of inverse-transformed current response times before (left) and after (right) a 150 ms trim.
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maximum likelihood estimation (MLE). Restricted maxi-
mum likelihood estimation (REML) is used otherwise.

To readers less familiar with LME or model fitting, 
what these analyses do is test the influence of binding and 
contingency learning orthogonally, in the same way that 
two factors in an analysis of variance (ANOVA) are meas-
ured separately. The model fitting is equivalent to treating 
a factor (in this case, lag) as a scale variable with an 
imposed form, as you would do in an ANOVA with a con-
tinuous predictor variable (e.g., training block). The linear 
model is like a typical regression or correlation (or con-
tinuous variable in ANOVA), assuming that each x increase 
in lag translates to a y change in response time for the bind-
ing factors, whereas the power and exponential functions 
are (two slightly different) non-linear curves assuming 
more potent influences of recent events that slowly taper 
off with increasingly older events. The AIC/BIC scores 
assess which model provides the best fit after controlling 
for degrees of freedom (i.e., to counteract “overfitting”), 
with lower scores indicating better fit. Importantly, bind-
ing and contingency effects are assessed orthogonally, in 
the same way that one might, for instance, assess the influ-
ence of a confound in an effect by manipulating the key 
effect and the confound separately and inserting them as 
two factors in an ANOVA. Thus, if there are separate 
mechanisms producing contingency and binding effects 
(which, of course, combine in the same behaviour), then 
measuring them separately will reveal the unique influ-
ence of each.

Results

Analysis 1: asymptote

Full model.  First, consider Model 12, which was con-
ducted on individual trial response times with random 
subject and contingency intercepts, the main effect of 
contingency, and all binding factors across the 12 lags. 
The results of this model are presented in Table 3. Colour/
response repetitions produced robustly faster responses 
(negative estimates) for many lags, as did the word repeti-
tions. Most interesting, however, is the interaction 
between response and word repetitions. The estimates of 
these interactions are positive for most lags, indicating the 
standard binding effect (i.e., faster responses to DR-RR 
and DC-RC trials relative to DR-RC and DC-RR trials), 
though only significant in the first two lags. Table 4 pre-
sents the AIC and BIC differences between sequential 
models (e.g., Model 0–Model 1, Model 1–Model 2; raw 
model scores can be obtained with the R scripts). Substan-
tial extra explanatory variance is present for the first three 
models, indicating a benefit for coding of these extra lags. 
For the remaining lags, this seems inconsistent, but Model 
12 does have a better AIC fit than Model 3 (difference: 
10.95). This result suggests that binding effects at 

ever-increasing lags do matter, but at an ever-decreasing 
rate (i.e., the a priori prediction of the unitary account). 
Together, these results therefore tell a notably different 
story than Schmidt and colleagues (2010): clear binding 
influences were observed on the contingency effect. The 
BIC results should probably be interpreted cautiously.6 
Note also from Table 3 that the main effect of contingency 
is still significant in Model 12.

Slope.  Next, we compute the contingency effect for each 
of the models from Model 0–12. In particular, we compute 
the individual participant contingency betas for each of the 
models. These data are presented in Figure 4 (note that 
response times have been inverse transformed, so are not 
on a usual response time scale). Visually, we can see that 
the contingency effect beta drops rapidly early on after 
accounting for the first few lags and continues to decrease 
at an ever-diminishing rate afterwards. Next, we test the 
shape of this function to see whether the contingency 
effect approaches an asymptote significantly above zero. 
As expected, the slope fits a power function (also pre-
sented in Figure 4 as a solid line) substantially better than 
a linear (AIC difference: 4,840.9; BIC difference: 4,835.1) 
or an exponential function (both: 486.1). Importantly, the 
fitted power function produced a k (asymptote) that was 
significantly positive (Estimate: 0.0580548), t(202) = 14.45, 
SE = 0.0040165, p < .001, η2 = .51. What these results sug-
gest is that around 54% of the contingency effect is 
accounted for by binding effects, with the remaining 46% 
not. As such, these analyses are consistent with the idea 
that individual trial binding effects have a large impact on 
the magnitude of the contingency effect, but are not con-
sistent with the idea that the contingency effect is made up 
of a collection of individual trial binding effects exclu-
sively (i.e., as the unitary mechanism predicts). The dis-
tinct mechanisms view can be viewed as only partially 
consistent with the present results: there was a contingency 
effect independent of binding effects, on one hand, but 
previous-trial binding effects did (a) account for a substan-
tial portion of the contingency effect and (b) continued to 
do so far beyond the first one or two trials. Thus, these 
results might be interpreted as indicating partially distinct 
mechanisms (but with potential caveats to follow).

Analysis 2: higher-order binding interactions

The unitary mechanism view might be interpreted in two 
ways. According to one view, the contingency effect 
reflects the simple summation of individual trial binding 
effects. That is, the contingency effect emerges from the 
addition of binding effects from Lag 1 plus the binding 
effects at Lag 2, and so on. This is what we tested in 
Analysis 1 and was clearly not supported by the data. On 
the other hand, the influence of a memory trace on current 
behaviour could additionally be influenced by intervening 
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events. For example, a Trial n − 2 DR-RR trial (complete 
repetition) may not have the same magnitude of a benefit 
to current trial performance if the same word, or colour, or 
both was also presented on Trial n − 1. Specifically, in this 
case the presence of the distracter word in the more recent 
Trial n − 1 might prevent retrieval of the more distant epi-
sode that was stored in Trial n − 2 in which the distracter 
word was also present, which will effectively block this 
episode from retrieval (or, at least, reduce its impact). 
Furthermore, the episode that was created during Trial 
n − 2 will already have been retrieved during Trial n − 1, 
which will reduce its accessibility on later occasions (e.g., 
Schmidt et al., 2016).

Like the binding effects for individual lags, such “inter-
active” binding effects are also confounded with contin-
gency. While distracter or response repetitions are 
equiprobable following high- and low-contingency pair-
ings, their combinations are not. For example, “find” in 
blue (high contingency) is much more likely to be fol-
lowed by another “find” in blue than “walk” in blue (low 
contingency) is to be followed by another “walk” in blue, 
not only on trial n, but also in the intervening events. That 
is, there is a confound in the “sequences” of binding 
effects. Ignoring randomisation constraints (only in some 
datasets), following a low-contingency stimulus there is a 
9/30 chance (per lag) that only the word repeats, a 9/30 

Table 3.  Model 12 parameter estimates and statistics.

Factor Estimate SE df t p

Intercept −1.87600 0.04854 6.099 −38.656 <.001***
Contingency 0.05588 0.01355 27.64 4.123 <.001***
Response 1 −0.42440 0.00480 52,120 −88.491 <.001***
Response 2 −0.03458 0.00479 52,120 −7.219 <.001***
Response 3 0.04209 0.00479 52,110 8.792 <.001***
Response 4 0.00633 0.00479 52,110 1.323 .186
Response 5 0.01437 0.00479 52,120 2.999 .003**
Response 6 −0.00342 0.00479 52,130 −0.713 .476
Response 7 −0.01330 0.00480 52,130 −2.769 .006**
Response 8 −0.00877 0.00479 52,120 −1.829 .067†

Response 9 −0.01182 0.00480 52,130 −2.464 .014*
Response 10 −0.01477 0.00480 52,130 −3.080 .002**
Response 11 −0.01234 0.00477 52,120 −2.590 .010**
Response 12 −0.00934 0.00477 52,120 −1.958 .050†

Word 1 −0.05400 0.00480 52,120 −11.262 <.001***
Word 2 −0.01679 0.00479 52,120 −3.508 <.001***
Word 3 −0.00165 0.00479 52,120 −0.344 .731
Word 4 0.00297 0.00479 52,110 0.620 .535
Word 5 −0.01023 0.00479 52,120 −2.135 .033*
Word 6 0.00406 0.00479 52,130 0.848 .396
Word 7 0.00739 0.00481 52,130 1.538 .124
Word 8 −0.00095 0.00479 52,110 −0.198 .843
Word 9 0.00943 0.00480 52,130 1.967 .049*
Word 10 0.00312 0.00480 52,120 0.650 .516
Word 11 0.00178 0.00476 52,120 0.373 .709
Word 12 −0.00678 0.00477 52,120 −1.422 .155
Interaction 1 0.10110 0.00539 52,110 18.752 <.001***
Interaction 2 0.01438 0.00538 52,110 2.671 .008**
Interaction 3 0.00508 0.00538 52,100 0.945 .344
Interaction 4 −0.00035 0.00537 52,090 −0.065 .948
Interaction 5 0.00308 0.00538 52,100 0.573 .567
Interaction 6 −0.00213 0.00537 52,120 −0.398 .691
Interaction 7 0.00626 0.00537 52,110 1.165 .244
Interaction 8 0.00632 0.00537 52,100 1.177 .239
Interaction 9 0.00264 0.00536 52,100 0.491 .623
Interaction 10 0.00394 0.00535 52,080 0.736 .462
Interaction 11 0.00060 0.00534 52,090 0.112 .911
Interaction 12 −0.00069 0.00534 52,090 −0.130 .897

SE: standard error.
†p < .1, *p < .05, **p < .01, ***p < .001.
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chance that only the response repeats, and a small 1/30 
chance of a complete repetition. By contrast, for high-con-
tingency trials these are 2/30, 2/30, and 8/30, respectively. 
Thus, there is globally a higher chance that something 
repeats after a low-contingency trial and a very low chance 
of a complete repetition. Although rather complicated, 
such “interactive” binding effects should (i.e., if these 
interactions matter) produce more speeding of the high-
contingency trials and costs for the low-contingency trials. 
Thus, as with the “simple” (one lag) binding effects, fail-
ing to account for “interactive” binding effects could again 
exaggerate the true main effect of contingency.

In sum, it is plausible to expect interactions between 
binding effects on different lags and of a specific a priori 
form: diminished binding effects for older events when 
following events repeated the features. It is likely impos-
sible to test this notion in the same way as in the prior 
analyses. In particular, the number of hypothetical interac-
tions between each of the lags grows exponentially at such 
a rapid rate the more lags considered that the number of 

factors would quickly exceed the number of data points. 
This does make it impossible to compute an intercept. 
However, what we can clearly do is test whether there are 
“higher-order” binding interactions in the data at all and, 
more critically, whether they influence the estimate of the 
contingency effect. That is, even if there are higher-order 
binding interactions, they may or may not account for 
added variance in the contingency effect (e.g., if our rea-
soning above is wrong). If there is no evidence for any 
higher-order binding interactions (or if such interactions 
exist but do not impact the contingency effect), then this 
would spell the end for any version of the unitary mecha-
nism view that we can conceive: if binding effects are 
merely additive across lags (to be tested here) and additive 
binding effects do not account for the entire contingency 
effect (established in Analysis 1), then there is necessarily 
more to the contingency effect than just binding.

In particular, we consider to what extent the binding 
interaction on Trials n − 2 to n − 4 (short form: int2 to int4) 
are influenced by whether the word from Trial n repeated 
on each of the intervening events, and also whether the 
colour response repeated. Thus, this includes factors for 
the binding interaction on Trial n − 2 as a function of word 
repetition on Trial n − 1 (short form: int2 × word1), the 
interaction on Trial n − 3 as a function of word repetition 
on Trials n − 1 (int3 × word1) and n − 2 (int3 × word2), 
and similarly for Trial n − 4 (following the same pattern: 
int4 × word1, int4 × word2, int4 × word3), in addition to 
the same interactions with response repetition (int2 × 
resp1, int3 × resp1, int3 × resp2, int4 × resp1, int4 × 
resp2, int4 × resp3). This is, of course, only a small subset 
of the possible interactions one could code for, but a theo-
retically interesting set. In particular, we might expect that 
the influence of a binding interaction (say, on Trial n − 2) 
will be reduced if the word repeated in an intervening 
event (e.g., on Trial n − 1). All analyses and data treatments 
were identical to those in Analysis 1.

Table 5 presents the results of Model 4 with these added 
interactions. Notably, some of these interactions are signifi-
cant. This is especially the case for the interaction between 
the n − 2 binding interaction and the n − 1 response repeti-
tion effects (i.e., the most recent potential binding interac-
tion). The positive parameter indicates that the size of the 
binding interaction is decreased when the colour response 
repeats on the intervening trial. There is, of course, some 
degree of noisiness in many of the other parameters, which 
we return to in the next analysis. The contingency betas 
were further extracted for each participant using the normal 
Model 4 (as in Analysis 1) and the present version contain-
ing the added higher-order interactions. The difference in 
the contingency effect was robustly smaller when the 
higher-order interactions were included (estimate: 0.06026) 
than when they were excluded (estimate: 0.06562; differ-
ence: 0.00536), t(202) = 24.08, p < .001. Both AIC (differ-
ence: 114.13) and BIC (7.73) were also lower in the larger 

Table 4.  Fit differences between sequential models.

Model comparison AIC BIC

Model 0–Model 1 10,307.64 10,281.05
Model 1–Model 2 104.05 77.46
Model 2–Model 3 99.75 73.14
Model 3–Model 4 −1.94 −28.53
Model 4–Model 5 5.69 −20.91
Model 5–Model 6 −5.13 −31.73
Model 6–Model 7 1.73 −24.87
Model 7–Model 8 −1.16 −27.76
Model 8–Model 9 0.76 −25.83
Model 9–Model 10 3.83 −22.78
Model 10–Model 11 1.57 −25.02
Model 11–Model 12 5.6 −21

AIC: Akaike information criterion; BIC: Bayesian information criterion.

Figure 4.  Contingency effect estimate (with standard errors) 
in Models 0–12 with fitted power function. Note that the 
estimate does not approach a zero asymptote.
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model. Combined, these results demonstrate that (a) there 
are interactive effects between bindings at different lags, 
and more critically (b) these do explain added variance in 
the contingency effect. This analysis had the potential to 
conclusively falsify the unitary mechanism view. However, 
although we cannot continue this sort of analysis backward 
for enough lags to compute a slope and intercept for the 
contingency effect, the observed interactive binding effects 
instead leave open the possibility that the contingency 
effect might be solely explainable by binding, which (if 
true) would be consistent with the unitary mechanism view.

Analysis 3: previous response

In the previous analysis, it was shown that the magnitude 
of binding effects for a given Trial n − x is influenced by 
intervening events. In particular, binding effects for a 
given lag were reduced if an intervening event repeated the 
same stimuli/responses. These analyses were not perfect, 
largely due to the fact that we cannot code for all potential 
“interactive binding effects.” Indeed, some of the noisi-
ness in parameters could easily be explained by omitted 
effects we could not code for. For instance, an interaction 

between a binding event on Trial n − 4 and Trial n − 1 
ignores what happened on Trials n − 3 and n − 2. Still, 
Analysis 2 demonstrated clearly that the simple “additive” 
binding model in Analysis 1 missed legitimate binding 
influences. Following up on this finding and related to the 
above-mentioned limitation with Analysis 2, we assess the 
magnitude of the contingency effect as a function of 
whether the last occurrence of the currently presented 
word was linked to the same or a different colour response 
in Analysis 3. For instance, if the current trial is “find” in 
blue, then the response relation factor codes whether 
“find” was last presented with a blue response versus 
another colour response. Of course, the last presentation of 
“find” could have been on the immediately previous trial 
or a number of trials before. We further code this lag in the 
lag factor, which was first coded as the number of trials 
prior to the current one where the current word last 
appeared (e.g., “1” if the same word occurred on trial n − 1, 
“2” if the same word last occurred on trial n − 2). As sug-
gested by an anonymous reviewer, this predictor was then 
inverse transformed (−10/lag) such that recent matches 
(e.g., 1) were more heavily weighted than much more dis-
tant matches (e.g., 12), then centred on the mean.

Table 5.  Model 4 with higher-order binding interactions.

Factor Estimate SE df t p

Intercept −1.90600 0.04819 5.725 −39.544 <.001***
Contingency 0.06026 0.01114 13 5.408 <.001***
Response 1 −0.45360 0.00607 52,090 −74.771 <.001***
Response 2 −0.04739 0.00579 52,140 −8.189 <.001***
Response 3 0.04598 0.00535 52,130 8.601 <.001***
Response 4 0.00634 0.00478 52,120 1.326 .185
Word 1 −0.06689 0.00609 52,140 −10.989 <.001***
Word 2 −0.02005 0.00578 52,140 −3.467 <.001***
Word 3 −0.00407 0.00537 52,140 −0.758 .448
Word 4 0.00246 0.00479 52,130 0.515 .607
Interaction 1 0.10850 0.00552 52,110 19.674 <.001***
Interaction 2 0.00536 0.00587 52,100 0.914 .360
Interaction 3 −0.00199 0.00624 52,080 −0.32 .749
Interaction 4 −0.01029 0.00656 52,100 −1.57 .116
int2 × resp1 0.04963 0.00547 52,140 9.076 <.001***
int3 × resp1 0.01179 0.00548 52,120 2.151 .031*
int3 × resp2 0.00720 0.00539 52,140 1.336 .182
int4 × resp1 0.00522 0.00546 52,140 0.956 .339
int4 × resp2 0.02252 0.00541 52,140 4.164 <.001***
int4 × resp3 −0.01141 0.00528 52,140 −2.161 .031*
int2 × word1 −0.01299 0.00550 52,120 −2.36 .018*
int3 × word1 −0.00219 0.00550 52,140 −0.398 .691
int3 × word2 0.00268 0.00539 52,130 0.498 .619
int4 × word1 0.01166 0.00549 52,140 2.126 .033*
int4 × word2 −0.00873 0.00541 52,140 −1.613 .107
int4 × word3 0.00949 0.00531 52,140 1.787 .074†

SE: standard error.
†p < .1, *p < .05, **p < .01, ***p < .001.
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The core advantage of this analysis7 is that it provides 
us with estimates of the real strength of binding effects that 
are not underestimated due to the inclusion of sequences 
containing intervening occurrences of the word stimulus. 
Including sequences with intermediate occurrences into 
the analysis inevitably reduces the estimated strength of 
the binding effect by averaging across sequences in which 
binding effects differ with regard to their strength. 
Focusing only on binding and retrieval effects in sequences 
without these intermediate occurrences might therefore 
give us a closer estimate of the true strength of pure stim-
ulus-based response retrieval when this effect is strong and 
not mitigated by counteracting influences. Inclusion of the 
lag factor is important not only as a test of the a priori 
notion that response relation effects should decrease as lag 
increases, but also controls for the fact that response rela-
tion repeats tend to occur more recently for high-contin-
gency trials than for low-contingency trials.

Similarly, it is also worth considering the relation in the 
reverse direction. That is, whether the last occurrence of 
the colour/response was with the same or different word is 
also important. Between the last presentation of the word 
and the current trial, it is also possible that there was an 
intermediate response repetition (i.e., with a different 
word). This will occur equally often with high- and low-
contingency trials (e.g., on .154  of Trial n − 1 trials), which 
therefore does not represent a problem. Slightly more 
complicated is when splitting contingency by response 
relation condition (i.e., when including the contingency ∙ 
response relation interaction in the model). In this case, 
intermediate response repetitions are not equally distrib-
uted across the four contingency by response relation cells 
(high-repeat: .09; high-change: .409; low-repeat: .409 ; 
low-change: .126).

Other than the change in factors, all analyses and data 
treatments were performed in the identical manner as in 
Analyses 1 and 2 with one exception. Trials on which there 
was not a previous presentation of the word (i.e., the first 
appearance of each distracting word) or of the colour (i.e., 
the first appearance of each colour) were excluded (e.g., 
rather than the first 12 trials of the experiment), as response 
relation factors cannot be coded for these trials.

To begin with, we consider only the response relation 
and lag factors, with their interaction, in Model A to estab-
lish a baseline response relation effect and how this is 
modulated by lag. The results of this and the following two 
models are presented in Table 6. As can be observed, there 
was a significant response relation effect in Model A, with 
responses overall faster if the last response to the distracter 
was the same as the current response. There was also a 
main effect of lag, indicating overall slower responses 
with increasing lag. More importantly, response relation 
and lag interacted. The negative estimate indicates that, as 
predicted, the response relation effect decreases with 
increasing lag.

Next, we consider Model B, which is identical to 
Model A except that the main effect of contingency was 
also added. The same effects observed in Model A were 
also present in Model B. Notably, the newly added con-
tingency factor did not produce a significant effect. 
Furthermore, AIC was numerically comparable (differ-
ence: −0.3) and BIC was lower (−9.1) in the smaller 
Model A, demonstrating worse fit for Model B. In other 
words, contingency did not robustly explain anything on 
top of the response relation effects. Comparing individ-
ual participant contingency betas from Model B to a 
model containing only contingency as a factor, the con-
tingency effect was reduced by 92% (from 0.12545 to 
0.01049), t(202) = 156.91, p < .001.

Finally, we consider Model C, in which the full factorial 
interactions between contingency, response relation, and lag 
were added. In this model, contingency did come out as sig-
nificant, albeit significantly negative. Contingency further 
interacted with response relation and lag. Exploring these 
interactions further, we observed that the contingency effect 
was significantly negative with a response relation repeat 
(−0.07726), t(35,210) = 4.610, SE = 0.01676, p < .001, and 
significantly positive with a response relation change 
(0.02487), t(18,120) = 3.657, SE = 0.00680, p < .001. These 
effects should, however, be interpreted with caution given 
the intermediate response repetition confound already dis-
cussed. In particular, it is more likely that there was an inter-
mediate response repetition (which speed responses) on low 
relative to high-contingency trials when there is a response 
relation repeat (explaining the unusual negative contingency 
effect) and the reverse when there is a response relation 
change (explaining the positive contingency effect). We 
therefore suspect that these interactive patterns are spurious.8 
Together these results suggest even more strongly still that 
binding influences have a sizable impact on the magnitude of 
the contingency effect.

As one final consideration, it might be suggested that 
binding contrasts are not completely separated from the 
task-wide contingency in another respect. Current-trial 
contingency was controlled for in our prior analyses, indi-
cating no direct influence of the contingency on the cur-
rent trial. However, it might be proposed that the 
contingency influences the strength of binding, resulting in 
stronger binding effects for high-frequency pairings. Such 
a “prior-trial” contingency effect would actually be inap-
propriately attributed to binding. For a current high-con-
tingency trial, a response relation repetition (“complete 
repetition”) necessarily implies that the last presentation of 
the word was also a high-contingency trial, whereas for a 
response relation change the last presentation of the word 
was necessarily a low-contingency trial. This is actually 
(partially) reversed for low-contingency trials: the last 
presentation of the word for a response relation repetition 
was necessarily a low-contingency trial, whereas for 
response relation change it could have been either high or 
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low contingency (i.e., the high-contingency response to 
the word or the remaining low-contingency response).

For current (i.e., Trial n) high-contingency trials, we 
cannot test this assumption, because response relation 
(repeat vs. change) is perfectly confounded with the con-
tingency during the previous occurrence (high vs. low con-
tingency). However, for current low-contingency trials, 
the “confound” is not complete. Instead, we can distin-
guish between three different types of “last occurrence” 
trials: (a) response relation repetitions where the last 
occurrence was low contingency (repeatLC), (b) response 
relation changes where the last occurrence was low contin-
gency (changeLC), and (c) response relation changes 
where the last occurrence was high contingency 
(changeHC). Based on simple binding, of course, we 
should expect that repeatLC trials should be faster than 
changeLC and changeHC trials. No differences should be 
expected between the two types of response relation 
changes, however. On the other hand, if the contingency 
does influence binding, as discussed above, then we should 
expect more interference for the changeHC trials. To test 
this notion, we compared each pair of conditions in a trial 
type (e.g., changeLC vs. changeHC) by lag LME. As 
shown in Table 7, we did observe faster responses to 
repeatLC trials relative to both changeLC and changeHC. 
This is exactly as predicted by a simple binding account. 
However, we did not observe a difference between 
changeLC and changeHC trials, inconsistent with the 
“contingency influences binding” notion.

Discussion

The binding and contingency learning literatures are both 
large enterprises. Excluding a recent enthusiasm for con-
sideration of the potential relation between learning and 
binding (Giesen & Rothermund, 2015; Moeller & Frings, 
2017a; Schmidt et  al., 2016), these two literatures have 
historically been non-communicative with each other (i.e., 
with only sporadic exceptions). The goal of the present 
investigation was to further explore the notion that contin-
gency and binding effects might be the result of one uni-
tary memory mechanism. This notion contrasts with 
previous suggestions (e.g., Colzato et al., 2006; Hommel 
& Colzato, 2009) that the two types of effects are due to 
entirely different processes (e.g., unbinding costs vs. asso-
ciation adjustment) operating on different types of mem-
ory codes (e.g., event files vs. episodic or associative 
memory traces) in different memory stores (e.g., short- vs. 
long-term memory).

The present results suggest two things. First, there was a 
clear influence of recent bindings on the magnitude of the 
contingency effect. That is, at least to some degree the con-
tingency effect is a (compound) binding effect in disguise. 
Although the most notable effects were for the two imme-
diately preceding trials in Analysis 1, larger models coding 
up to 12 previous trials continued to explain more variance 
in the contingency effect. This diverges from the conclu-
sions of Schmidt and colleagues (2010). The influence of 
bindings at longer lags will not always be apparent if 
attempting to assess the unique binding effect for a single 

Table 6.  Models A–C.

Factor Estimate SE df t p

Model A
  Intercept −2.00500 0.04020   6.726 −49.880 <.001***
  Response relation (Rel) 0.16070 0.00422 53,520 38.130 <.001***
  Lag 0.05635 0.00072 53,520 77.970 <.001***
  Rel × Lag −0.07646 0.00125 53,520 −61.290 <.001***
Model B
  Intercept −2.01400 0.04074   7.075 −49.440 <.001***
  Contingency (Cont) 0.00847 0.00633 53,520 1.340 .180
  Rel 0.15650 0.00527 53,520 29.670 <.001***
  Lag 0.05635 0.00072 53,520 77.970 <.001***
  Rel × Lag −0.07646 0.00125 53,520 −61.290 <.001***
Model C
  Intercept −1.92400 0.04341   9.442 −44.335 <.001***
  Cont −0.07908 0.01670 53,530 −4.735 <.001***
  Rel 0.04360 0.02043 53,520 2.134 .033*
  Lag 0.06807 0.00505 53,520 13.493 <.001***
  Cont × Rel 0.10290 0.01804 53,520 5.704 <.001***
  Cont × Lag −0.01143 0.00488 53,520 −2.341 .019*
  Rel × Lag −0.07567 0.00601 53,520 −12.602 <.001***
  Cont × Rel × Lag 0.00322 0.00529 53,520 0.608 .543

SE: standard error.
†p < .1. *p < .05. **p < .01. ***p < .001.
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lag, because the unique contribution at a given lag grows 
vanishingly smaller the further away it occurred from the 
current trial. However, if one pools across many such trials, 
it becomes clear that variance is being explained past one or 
two trials. This therefore also suggests that while bindings 
are certainly more potent influencers of behaviour when 
occurring very recently (e.g., Frings, 2011), “event files” 
do not completely disintegrate after a few seconds (Stoet & 
Hommel, 1999). Future research might aim to assess 
whether similar residual effects of bindings can be observed 
in more typical, non-learning binding procedures (e.g., 
with regression approaches similar to the current report). If 
the present story is correct, then one should expect that cod-
ing backwards for more and more prior bindings should 
lead to more and more explained variance in response 
times, likely following a comparable power curve as we 
observed in the present studies.

Relatedly, it is worth pointing out that bindings are con-
flated with the contingency effect as long as the contin-
gency manipulation is still in place (e.g., as in the datasets 
used in this article). However, this is no longer the case 
once the contingency is removed, for instance, in a test 
block where the same words are presented equally often in 
all colours. In this “unlearning” or test scenario, the distri-
bution of the four binding conditions is the same for high- 
and low-contingency trials (i.e., aside from carryover from 
the prior phase). It would therefore be interesting to carry 
out analyses similar to the present ones across learning and 
unlearning phases (and perhaps also relearning and/or 
counterconditioning). Consistent with the story of this 
work, adaptations to changes in the contingencies occur 
very quickly (e.g., Lin & MacLeod, 2018; Schmidt & De 
Houwer, 2016; Schmidt et al., 2010), but it would be inter-
esting to assess whether one learning function could 
explain changes in performance across phases.

Second, the results clearly show that the unitary mecha-
nism account of learning and binding is, at minimum, 
mostly correct, though may or may not be the whole story. 
That is to say, learning and binding effects clearly are not 
orthogonal to one another. Our Analysis 1 demonstrated 
that a substantial portion of the contingency effect is 
accounted for by binding. However, there is a unique effect 
of contingency that exceeds that attributable to the additive 
effects of individual exemplars. As such, a learning-as-
binding account that assumes no interactivity between 
bindings from multiple lags (e.g., that what happens on 
Trial n − 1 does not influence binding effects from Trial 
n − 2) is clearly wrong (or rather: not the complete story). 
However, if we do assume such interactive effects, the 
pure learning-as-binding view might still be salvageable. 
Indeed, we found robust evidence for interactive binding 
effects in our Analysis 2, where binding effects for a given 
lag were diminished if an intervening event repeated the 
distracting stimulus or target/response. We further investi-
gated the binding influence of the last occurrence of a 
stimulus in Analysis 3. These analyses paint a somewhat 
different picture than Analysis 1, with binding now 
accounting for nearly all (or at least the bulk) of the contin-
gency learning effect, rendering the unique contribution of 
the contingency learning factor quite small and non-signif-
icant. The combined results suggest that the unitary mech-
anism view is correct in the assumption that what we 
measure in learning and binding paradigms is, at mini-
mum, mostly assessing the same acquisition processes. 
That is, the results suggest that there may be a partial sepa-
ration between the mechanisms that contribute to contin-
gency and binding effects, but there is also a considerable 
degree of overlap.

Similarly, the distinct mechanisms view either is con-
sistent or inconsistent with the present results depending 

Table 7.  Analysis of previous contingency types.

Factor Estimate SE df t p

repeatLC vs. changeLC
  Intercept −1.95300 0.04332 5.748 −45.075 <.001***
  Trial Type −0.11820 0.00958 9,107 −12.349 <.001***
  Lag 0.01085 0.00276 9,097 3.937 <.001***
  Trial Type × Lag 0.03511 0.00276 9,099 12.727 <.001***
repeatLC vs. changeHC
  Intercept −1.94500 0.04611 5.502 −42.181 <.001***
  Trial type −0.12030 0.01315 1,702 −9.149 <.001***
  Lag 0.01286 0.00363 1,807 3.546 <.001***
  Trial Type × Lag 0.03443 0.00362 1,807 9.501 <.001***
changeLC vs. changeHC
  Intercept −1.82900 0.04308 5.593 −42.441 <.001***
  Trial Type −0.00540 0.00795 9,410 −0.679 .497
  Lag −0.02386 0.00241 9,417 −9.909 <.001***
  Trial Type × Lag −0.00040 0.00241 9,415 −0.166 .868

SE: standard error.
†p < .1, *p < .05, **p < .01, ***p < .001.
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on how extremely one interprets it. The notion that the 
binding effect and the contingency effect (perhaps: after 
controlling for one or two prior bindings) tap into two 
completely different mechanisms in a process-pure way is 
clearly inconsistent with the present data. Instead, most of 
what is being studied with a contingency effect measure is 
a combination of prior-trial bindings. Phrased the reverse 
direction, much of what is studied in a binding effect is a 
short-term consequence of learning. However, this does 
not rule out some degree of unique process contributions 
to each effect. In other words, the truth might lie in less 
extreme percentages: the processes that bring about con-
tingency and binding effects overlap heavily, but not com-
pletely. As an aside, the present report also demonstrated 
why we need to be careful about how we explore unique 
variance explained by correlated predictors, as discussed 
briefly in Supplementary Material B.

The unitary view

Overall, the results of our Analysis 1 were not consistent 
with a pure learning-as-binding model, at least as concep-
tualised in terms of additive binding effects. That is, bind-
ing effects from multiple lags did not “add up” to explain 
the entirety of the contingency effect. The contingency 
factor continued to explain variance when competing in 
the multiple regression with the binding factors. By one 
view, this might seem surprising. Effectively, a contin-
gency is defined by the relative history of co-occurrences 
of pairs of stimulus/response features. Whether conceptu-
alised in terms of discrete memory traces or association 
weights, the current state of the system is primarily deter-
mined by the updates that occur on each experienced 
event. For this reason, an explanation of the contingency 
effect in terms of the influences of individual events might 
seem to be almost inherently true (at least partially, it 
should be). Thus, the results of our Analysis 1 might seem 
puzzling from this perspective.

However, a purely additive interpretation of the unitary, 
contingency-as-binding view might not be correct. Indeed, 
we think that it is reasonable to assume that binding effects 
at different lags should interact. Although we did begin 
with the notion that additive binding contrasts might pos-
sibly be able to explain all variance in the contingency 
effect, there are good reasons to suppose that this might 
not be true. In particular, the influence of a given event on 
current-trial performance presumably should be influ-
enced by intervening events. Indeed, Analysis 2 revealed 
that the binding interaction for a given lag is moderated by 
repetitions of the target response (or distracter) in the inter-
mediate events before the current trial. For instance, an 
n − 2 DR-RR of “find” in blue does not have the same mag-
nitude of influence on current-trial performance if the col-
our response (or distracter) also repeated on Trial n − 1. 
This makes sense, as the memory updating that occurs on 

Trial n − 1 should presumably influence the memory trace 
from Trial n − 2. For instance, the exemplar encoded on 
Trial n − 2 should be retrieved if stimuli repeat on Trial 
n − 1 (but not if stimuli do not repeat) and this should influ-
ence subsequent retrievability of the n − 2 exemplar. In the 
PEP model, for instance, retrieval-induced decay should 
make the exemplar less retrievable.

The same interactive processes might prove true of 
associative, distributed, or other models of memory (which 
may be mathematically equatable with exemplar-based 
accounts; Kelly et al., 2017). That is, the constant updating 
of association weights should presumably produce a simi-
lar sort of decay function, whereby the association weight 
is simply a recency-weighted average of previous event 
encodings. However, which weights are adjusted on a 
given trial will be influenced by the stimuli presented and 
response made on a given trial. In particular, adjustments 
of association weights on Trial n − 1 should influence asso-
ciations for similar stimuli (activated associations) more 
than for non-activated stimuli. As such, if Trial n − 1 
repeats a stimulus from Trial n − 2, the influence of the 
Trial n − 2 event on association weights will be weakened.

Most critically, however, we further found that these 
“interactive binding effects” explained further variance in 
the contingency effect in Analysis 2. Thus, there are bind-
ing influences that were not coded in the initial regression 
analysis (i.e., Analysis 1). An analysis that does not take 
into account these complex interdependencies thus leads 
to an underestimation of binding effects by averaging 
across different types of sequences for which binding 
effects differ systematically: the weaker binding effects of 
previous episodes during sequences that contain an inter-
vening occurrence of either the current stimulus or the 
response dampens the predictive power of those trials in 
which no such intervening repetition occurred. These 
interactions, as previously discussed, are systematically in 
favour of high-contingency trials and to the detriment of 
low-contingency trials. As such, to the extent that the con-
tingency factor is able to capitalise on the unmodelled 
variance for these higher-order binding interactions, the 
“true” effect of contingency will be overestimated (and the 
true effect of binding underestimated).

Simply coding for the “full gamut” of the potential 
interactive patterns in a slope analysis akin to those pre-
sented in Analysis 1 will prove impossible, as the number 
of interactive contrasts will grow at an exponential rate 
the more lags one considers (i.e., such that the number of 
factors will rapidly exceed the number of data points). To 
overcome these complexities, we introduced a new way 
of testing the effects of binding that focuses just on the 
last occurrence of the distracting stimulus for the current 
trial in Analysis 3, contrasting trials in which the last epi-
sode contains either the response that matches or does not 
match the current response requirements. Such an analy-
sis is not fraught with problems relating to 
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complex interactions of competing and interacting 
retrieval processes, and it yielded a fairly clear picture: 
apparently, binding effects regarding the last occurrence 
of a word stimulus explained away the majority of the 
contingency effect (92%). The contingency effect that 
remained was non-significant, albeit trending in the cor-
rect numerical direction. The extra influence of older, 
weaker exemplars (i.e., not-last occurrences of the stimu-
lus) might explain the remaining variance. Thus, Analysis 
3 had its limitations, too. Unfortunately, combining all the 
desirable features of each of the three analyses into one 
large analysis does not seem possible with the present 
datasets. Future experimental research might aim to 
develop procedures optimised to capture specific interac-
tive binding effects (e.g., by strategically manipulating 
the series of items), rather than testing for such effects 
after the fact as we did in the present report.

Implications for memory models

The exemplar-based, unitary account explained above pro-
vides a relatively coherent and parsimonious account of a 
range of phenomena. Binding (or encoding) of events into 
memory and the influence of the subsequent retrieval of 
these events on performance suggests strong ties between 
areas of research seemingly investigating unrelated phe-
nomena. Related conceptual points have been made sev-
eral times in a number of focal literatures. For instance, 
simple binding “biases” (or “confounds”) have repeatedly 
been noted in a variety of domains, such as in the congru-
ency sequence effect (CSE; Hommel et  al., 2004; Mayr 
et  al., 2003), proportion congruent effect (PCE; Risko 
et  al., 2008), switch cost (Goschke, 2000; Schmidt & 
Liefooghe, 2016), and negative priming (Rothermund 
et al., 2005). It has similarly been noted that improvements 
with practice (skill acquisition) and repetition priming can 
been explained by the same power function of memory: (a) 
an ever-increasing store of exemplars allows for faster and 
faster responses with practice, and (b) the decay (or 
decreasing retrievability of memory traces) with time 
explains repetition priming effects (Logan, 1990). 
Similarly, we suggest that (a) decreasing influences of 
older and older traces and (b) accumulation of more mem-
ory traces of frequent over infrequent events explains 
binding and learning effects, respectively. A simplified 
illustration in Figure 5 illustrates this point.

Learning/binding as confounds

As mentioned earlier, binding and learning effects, in some 
instances, are not the key effects of interest, but rather con-
founds to something else that authors are aiming to study. 
For instance, the CSE is the observation that congruency 
effects (e.g., in the Stroop task) are smaller following an 
incongruent trial than following a congruent trial (Gratton 

et al., 1992). The CSE is typically used as a means to study 
conflict-driven attentional adjustments (Botvinick et  al., 
1999), though binding biases systematically confound this 
effect (Hommel et  al., 2004; Mayr et  al., 2003) without 
proper controls (e.g., because complete repetitions are 
only possible on a sequence of two congruent or two 
incongruent trials, but not on trials where congruency 
changes from congruent to incongruent or vice versa). 
Similarly, the PCE is the observation that congruency 
effects are smaller when most trials are incongruent rela-
tive to when most trials are congruent (Logan & Zbrodoff, 
1979). Like the CSE, the PCE is typically used to study 
conflict-driven attentional adaptation (Botvinick et  al., 
2001), but this effect is confounded with contingencies 
(Schmidt & Besner, 2008) between distracters and targets 
(without proper controls). As suggested by Schmidt (2019) 
and reinforced by the present analyses, these “two” biases 
might actually be regarded as one. Approaches to dealing 
with such confounds already exist (Braem et al., 2019), but 
the present results might also suggest that we should not 
only be attentive to overall regularities between stimuli, 
but also the recent pairings when aiming to rule out con-
founds. For instance, if a PCE is confounded by a contin-
gency, then we should expect especially large biases for 
recent stimulus pairings and not just the overall contin-
gency, which has received some (Risko et al., 2008) but 
limited attention.

Distinct mechanisms possibilities

In the previous sections, we considered the unitary view of 
learning and binding. However, it is worth considering 
some of the reasons why there might be more to the con-
tingency effect than just the individual events in isolation 
from one another. For example, the cognitive system might 
not only encode events, but also perform an averaging of 
many events to detect typical patterns, which may then be 
consolidated to a long-term store (or just extra traces in the 
same store). Relatedly, a participant might happen to 
notice (consciously or unconsciously) that there are regu-
larities between events (e.g., “find” tends to be presented 
in blue), producing (explicit or implicit) knowledge of 
these regularities. Thus, the participant might encode addi-
tional traces of the sort the word “find” tends to be pre-
sented in blue. Alternatively, noticed regularities might 
remain primed in working memory. Relatedly, participants 
may only notice part of a regularity (Perruchet & Amorim, 
1992; Perruchet et al., 1997). For instance, a consciously 
noticed distracter and response repetition (DR-RR) of a 
stimulus (though not necessarily the task-wide contin-
gency) might be actively maintained in short-term mem-
ory for some time (e.g., “I just saw ‘find’ in blue twice in a 
row”). All of these factors might produce an impact of the 
contingency on behaviour that exceeds that of the retrieval 
of individual traces. Indeed, one possibility is that the 
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contingency effect is exclusively due to individual-trial 
effects in participants that are unaware of the contingen-
cies, but those who do become aware produce an effect of 
the regularity on top of individual-trial biases. Future work 
might therefore explore whether the “true” effect of the 
regularity (i.e., beyond individual bindings) is awareness 
dependent.

Another consideration when relating learning and 
binding is the timescale over which we are discussing 
learning. Most “learning effects” that we study in the lab 
are, for instance, the result of just-acquired regularities 
experienced during the course of an experiment, what we 
might call early learning. If we consider learning consoli-
dated over considerably longer periods of time (e.g., the 
meaning of words in a language, associations between 
objects and their typical colouration), then the relation 
between learning and binding may become less direct. 
For example, Colzato and colleagues (2006; see also 
Hommel & Colzato, 2009) observed some differences in 
the magnitude and persistence of binding effects for 
heavily related relative to poorly related features. For 
instance, fruits (e.g., strawberry) are highly associated 
with colour (e.g., red) whereas shapes (e.g., triangle) are 
not. This might make it quite difficult to ignore the colour 
in which a fruit is presented, but less so for a simple tri-
angle. Indeed, binding effects vanished rather quickly for 
the latter stimuli, but not for the former. This learning-
derived attentional influence (which also occurs on 
shorter timescales in the case of contingent attentional 
capture; Cosman & Vecera, 2014; Jiang & Chun, 2001) 
might be regarded as an effect of learning that is distinct 
from binding (related also to the discussion of Moeller & 
Frings, 2017a, in the “Introduction” section).

Binding-as-learning

This work focused primarily on binding as a possible 
account of contingency learning effects, but the reverse is 
also implied by the unitary account tested here. That is, 
binding effects could, at least in part, be a consequence of 
learning. Here, too, there could in principle be more to a 
binding effect than simple stronger retrieval of recently 
encoded events from long-term memory. For instance, 
binding effects could, in part, be additionally influenced 
by experiences kept active in working/short-term memory 
from the previous trial (event files), as typically proposed 
in the binding literature. Further research exploring poten-
tial unique influences on binding not attributable to learn-
ing might be interesting in this respect (e.g., Moeller & 
Frings, 2017a). Furthermore, to the extent that contingency 
and binding effects are due to different mechanisms, fur-
ther investigation of the possible interrelations between 
learning and binding might be explored (e.g., Giesen & 
Rothermund, 2015).

In discussing this and related research with colleagues, 
one sentiment we have heard is that if binding effects are 
“just” a short-term consequence of learning, then this 
makes binding less interesting. We disagree. In other 
domains in which learning or binding “biases” represent 
confounds in attempting to study something else (e.g., 
higher-order control), the type of perspective presented 
here does potentially undermine the goal of a research 
domain. We do not think that the same is true for the rela-
tion between learning and binding. Instead, learning and 
binding can be viewed as two sides of the same coin and 
studying the influence of recent experiences on behaviour 
is no less interesting if closely related to the influence of 

Figure 5.  The influence of events on current behaviour as a function of how long ago the event was encoded (left) and the speed 
of responding after summing across multiple similar events that have been encoded (right). Both should presumably follow some 
function comparable to this power function.
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frequent experiences on behaviour. If anything, a unitary 
mechanism view is exciting and might indicate that there 
is much to gain by further cross-pollinating across the two 
research domains.

Limitations

One limitation of the present research is that we focused 
exclusively on one particular learning task, the colour-word 
contingency learning procedure. This was, in part, due to 
availability of data and in part due to the structural similarity 
between the colour-word contingency learning procedure 
and distracter-response binding preparations. However, 
future research should aim to perform similar analyses on 
other types of learning procedures, such as the flanker con-
tingency paradigm (Carlson & Flowers, 1996; J. Miller, 
1987), shape-colour learning paradigm (Levin & Tzelgov, 
2016; Schmidt & De Houwer, 2019), or, with modification, 
sequence learning (Nissen & Bullemer, 1987). Such work 
could clarify whether the observations of the present report 
are general to incidental learning more globally or whether 
different types of learning environments produce, for 
instance, stronger influences of the global regularity above 
that attributed to individual bindings.

Indeed, it could be the case that certain paradigms pro-
duce larger effects of regularities than for the colour-word 
contingency learning paradigm. For example, in the studies 
of Moeller and Frings (2017a) described earlier, distracting 
stimuli (flanking letters) and target stimuli (target letters) 
were both spatially and temporally separated. Especially 
the temporal separation between the pre-exposed flankers 
and the following target might be relevant. The extra time 
may allow participants to use knowledge of the regularities 
(maybe even explicitly) to anticipate the upcoming target. 
If so, we might imagine different results with the current 
analyses applied to such a temporal flanker paradigm.

Another limitation of this work is that we did not con-
sider the distinction between stimulus-stimulus and stimu-
lus-response learning and binding. In both colour-word 
contingency and distracter-response binding procedures, 
participants respond to the target on the basis of the target 
identity, typically with fixed target-to-response mappings 
(but not always; for example, Giesen & Rothermund, 
2014). As such, a repetition of the target entails a repetition 
of the response, and a target alternation entails a response 
change as well. Both learning and binding effects might, 
however, be influenced by both stimulus-stimulus regu-
larities and by stimulus-response regularities. For instance, 
participants could be learning that “find” is presented most 
often in blue (stimulus-stimulus pairings) and/or that 
“find” is presented most often with the J-Key response 
(stimulus-response pairings). In the present report, this 
does not reflect a confound per se, as the four conditions of 
the binding interaction are identical both in terms of stim-
ulus-stimulus and stimulus-response bindings. However, 

separate analyses of stimulus-stimulus and stimulus-
response regularities would be informative.

We might also wonder about whether the contribution 
of the regularity (vs. the individual-trial effects) changes 
over the course of extended training. For instance, it could 
be that earlier on in learning performance is primarily 
determined by the influences of individual bindings, but 
after more extensive practice the regularity begins to have 
a unique additional effect. The experiments reanalysed in 
this article were relatively short (longest: 300 trials). An 
interesting extension of this work would be to perform the 
same types of analyses on different phases of learning in 
more lengthy training procedures.

Conclusion

The present report aimed to test a unitary view of contin-
gency and binding effects. Coding for binding effects at 
multiple lags did not seem to fully account for the contin-
gency effect (Analysis 1). That is, the present results show 
that there is some component of the contingency effect that 
is not accounted for by the additive influence of individual 
memory traces alone. On the other hand, this is only true if 
it is assumed that each event has a separate, additive influ-
ence on current trial performance, which is probably unrea-
sonable. In particular, it is reasonable to expect that the 
influence of a given event on current-trial performance 
should be influenced by intervening events. Indeed, we 
found additional evidence for interactions between binding 
effects at different lags, with binding effects being dimin-
ished if an intervening event repeated stimuli/responses 
from the initial binding (Analysis 2). Fully accounting for 
all potential interactive binding effects is impossible, but 
we were able to show that these “interactive” binding 
effects explain yet more variance in the contingency effect. 
This implies that even more of the contingency effect is 
accounted for by binding than what Analysis 1 suggests. 
Our results were therefore also not sufficient to rule out a 
pure learning-as-binding view entirely, in contrast to a prior 
(but problematic) attempt to assess the same question 
(Schmidt et al., 2010). Relatedly, focusing on binding influ-
ences on the basis of the last occurrence of the current dis-
tracting stimulus explained away a substantial portion of 
the contingency effect (Analysis 3). At minimum, a sub-
stantial portion of the contingency effect does seem to be 
due to individual bindings, which indicates that the effects 
studied in learning and binding procedures are strongly 
related. We hope that future experimental and modelling 
work will help to further tease apart the unitary and distinct 
mechanism views of learning and binding effects.
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Notes

1.	 Data and R scripts are publicly available on the Open 
Science Framework: https://osf.io/h2vep/. More informa-
tion is available from the lead author on request.

2.	 Because the original studies were not concerned with bind-
ing, the datasets did not include variables for word and col-
our repetitions.

3.	 Data transformations can change not only the magnitude but 
direction of an interaction of two main effects (i.e., whether 
it is additive, overadditive, or underadditive), with the typi-
cal transforms (e.g., inverse) biasing towards underadditiv-
ity. This is primarily only a concern for assessing additivity 
and is not applicable to the crossover type interactions (see 
Loftus, 1978, for general concerns about interpreting non-
crossover interactions) that we investigate in the present 
report (or simple main effects). Globally, whether trans-
formed or non-transformed data should be used depends on 
the situation (e.g., non-transformed data can also be inap-
propriate in many scenarios).

4.	 These analyses were conducted with a Gamma distribution 
and identity link function, as previously recommended by 
Lo and Andrews (2015). These generalised linear mixed 
models (GLMMs) did have trouble converging, however.

5.	 A linear model with any non-zero slope, positive or nega-
tive, implies asymptotic performance of, respectively, ∞ or 
−∞.

6.	 The Bayesian information criterion (BIC) results are 
decidedly different (difference between Models 3 and 12: 
−228.43), which suggests that the more complex model is 
less likely. This discrepancy is due to the much larger pen-
alty for added factors in BIC (ln(n)∙k) than Akaike informa-
tion criterion (AIC) (2k). Given that the binding interaction 
is the only factor per lag that we are interested in (word and 
response repetitions being orthogonal with contingency) and 
that we assume a priori that binding effects at longer lags 
exist but are vanishingly small, the BIC penalty is unreason-
able (e.g., because it heavily “punishes” larger models for 

adding largely uninfluential factors, like the main effects of 
word repetition, and weaker effects at longer lags; related 
to the issue of tapering effects discussed by Burnham & 
Anderson, 2002).

7.	 Note that we initially performed some analyses with a sim-
ple analysis of variance (ANOVA) that supported the same 
general conclusions that we will report here, but two anony-
mous reviewers suggested that sticking with a similar analy-
sis approach as Analyses 1 and 2 was preferable. Code for 
the original ANOVA tests are also included in the R scripts.

8.	 An anonymous reviewer (the same who suggested the addi-
tion of our lag factor) suggested that we also include a “word 
relation” factor (i.e., coding for whether the last presentation 
of the colour/response was with the same vs. different word) 
and a corresponding response-linked lag factor along with 
contingency, response relation, and lag in one large LME. 
Although an interesting idea, this proves impossible due to 
nesting of some of the factors (e.g., it is impossible to have a 
response relation repeat or change preceding a word relation 
repeat). This leads to rank deficiency. Incidentally, contin-
gency does not come out as significant in such an analysis 
(see R scripts), though it is difficult to interpret such a model.
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