
ORIGINAL ARTICLE

Congruency sequence effects and previous response times: conflict
adaptation or temporal learning?

James R. Schmidt1 • Daniel H. Weissman2

Received: 8 July 2014 / Accepted: 12 June 2015 / Published online: 21 June 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract In the present study, we followed up on a recent

report of two experiments in which the congruency

sequence effect—the reduction of the congruency effect

after incongruent relative to congruent trials in Stroop-like

tasks—was observed without feature repetition or contin-

gency learning confounds. Specifically, we further scruti-

nized these data to determine the plausibility of a temporal

learning account as an alternative to the popular conflict

adaptation account. To this end, we employed a linear

mixed effects model to investigate the role of previous

response time in producing the congruency sequence

effect, because previous response time is thought to influ-

ence temporal learning. Interestingly, slower previous

response times were associated with a reduced current-trial

congruency effect, but only when the previous trial was

congruent. An adapted version of the parallel episodic

processing (PEP) model was able to fit these data if it was

additionally assumed that attention ‘‘wanders’’ during dif-

ferent parts of the experiment (e.g., due to fatigue or other

factors). Consistent with this assumption, the magnitude of

the congruency effect was correlated across small blocks of

trials. These findings demonstrate that a temporal learning

mechanism provides a plausible account of the congruency

sequence effect.

Introduction

Performance in distractor interference (i.e., Stroop-like)

tasks is typically impaired when there is conflict between

distractor and target stimuli. The prototypical example is

the Stroop task (Stroop, 1935), wherein participants are

usually slower and less accurate to identify the print color

of incongruent color words (e.g., the word ‘‘red’’ printed in

green) relative to congruent color words (e.g., ‘‘red’’

printed in red). Analogous congruency effects are observed

in the Simon (Simon & Rudell, 1967) and Flanker (Eriksen

& Eriksen, 1974) tasks.

It is frequently argued that participants adapt to conflict

between targets and distractors by directing attention

toward the target and/or away from the distractor in the

next trial. One of the most common approaches to studying

this hypothesized process is to investigate the congruency

sequence effect (CSE; Gratton, Coles, & Donchin, 1992).

A CSE is observed when the size of the congruency effect

in the current trial depends on the congruency of the pre-

vious trial. More specifically, a CSE is observed when the

congruency effect is smaller following incongruent relative

to congruent trials. According to the conflict adaptation

account (e.g., Botvinick, Braver, Barch, Carter, & Cohen,

2001), the CSE occurs because participants increase per-

ceptual attention to the target and/or reduce perceptual

attention to the distractor following incongruent trials to

avoid re-experiencing conflict.

However, an alternative account suggests that the CSE

is due to learning and memory confounds (Schmidt, 2013a;

see also, Schmidt, Notebaert, & Van Den Bussche, 2015).

For instance, feature repetition confounds, caused by

repeating the target and/or distractor from one trial to the

next, can engender a CSE in the absence of conflict

adaptation (Hommel, Proctor, & Vu, 2004; Mayr, Awh, &
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Laurey, 2001). Similarly, contingency learning confounds,

caused by presenting each distractor stimulus with a con-

gruent target more often than with an incongruent target (a

common procedure in the literature), can also engender a

CSE in the absence of conflict adaptation (Mordkoff, 2012;

Schmidt & De Houwer, 2011). An ongoing debate in the

literature therefore concerns whether the CSE is solely

explained by feature repetition and contingency learning

confounds, or whether conflict adaptation also contributes

to the CSE (e.g., Schmidt, De Schryver, & Weissman,

2014a; for reviews, see Egner, 2007; Schmidt, 2013a).

In a recent paper (Schmidt & Weissman, 2014; see also,

Weissman, Jiang, & Egner, 2014), we showed that feature

repetition and contingency learning confounds cannot

entirely explain the CSE in the prime-probe task (for

related research with other tasks, see Blais, Stefanidi, &

Brewer 2014; Duthoo, Abrahamse, Braem, Boehler, &

Notebaert, 2014; Jiménez & Méndez, 2012; Kim & Cho,

2014). In each trial, participants were asked to discriminate

the direction indicated by a target word (‘‘Left,’’ ‘‘Right,’’

‘‘Up,’’ or ‘‘Down’’) with a spatially compatible key press.

Critically, the target (e.g., ‘‘Left’’) was preceded by an

array of three vertically stacked distractor words that

indicated the same direction (e.g., ‘‘Left,’’ ‘‘Left,’’ ‘‘Left’’)

or the opposite direction (e.g., ‘‘Right,’’ ‘‘Right,’’ ‘‘Right’’).

To prevent feature repetition confounds, we presented

distractor–target combinations made of the words ‘‘Left’’

and/or ‘‘Right’’ in odd trials and distractor–target combi-

nations made of the words ‘‘Up’’ and/or ‘‘Down’’ in even

trials. To prevent contingency learning confounds, we

presented each distractor (e.g., ‘‘Up’’) equally often with

the congruent target (e.g., ‘‘Up’’) and with the opposite-

direction incongruent target (e.g., ‘‘Down’’). Unlike in

some previous experiments (Mordkoff, 2012; Schmidt &

De Houwer, 2011), we observed a CSE after controlling for

both types of confounds.

One conclusion researchers may draw is that this CSE

provides strong evidence for conflict adaptation. However,

such a conclusion is not a necessary inference. Simple

learning and memory biases have already been shown to

explain a substantial portion of the effect (e.g., Hommel

et al., 2004; Mayr et al., 2001) and further such confounds

may explain the rest.

One such confound is temporal learning (Schmidt,

2013a, b). In this view, learning is not only about deter-

mining what response to make (e.g., based on a contin-

gency or associative mechanism), but also about

determining when to respond (e.g., based on previous

response times). A sequence of notes, for instance, does not

make a song without the right timing. Although there are

many accounts of how temporal learning emerges (e.g.,

Grice, 1968; Kohfeld, 1968; Ollman & Billington, 1972),

we focus on just one for expositional simplicity. Other

accounts, however, would have similar implications for the

CSE. Thus, rather than advocating for any particular

account, we simply put forward the general claim that

temporal learning, more broadly, may have implications

for the CSE. As described next, this is because a critical by-

product of temporal learning is rhythmic behavior (Gros-

jean, Rosenbaum, & Elsinger, 2001).

One way in which rhythmic biases could arise is via the

development of learning-derived expectancies about when

to respond from one moment to the next. Simply put,

learning the trial-by-trial rhythm of a task will lead par-

ticipants to expect to respond quickly following a quick

response, and slowly following a slow response. In the

context of a psychological experiment, this could lead

response times on trial n to be highly correlated with those

on trial n - 1, which is already a well-documented finding

in the literature (e.g., Kinoshita, Forster, & Mozer, 2008;

Kinoshita, Mozer, & Forster, 2011). This is a significant

consideration when thinking about the nature of the CSE.

Since response times are generally faster in congruent than

in incongruent trials, participants should expect to respond

more quickly on trial n when trial n - 1 was congruent,

relative to incongruent.

An example mechanism by which such a temporal

expectancy could produce a CSE is presented in Fig. 1,

wherein the response threshold drops temporarily at around

the time that a participant expects to respond. As will be

demonstrated later with a computational model, this can be

achieved solely via the retrieval of response time infor-

mation from previously encountered trials from memory.

How does the mechanism work? Following congruent tri-

als, the response threshold drops early in the course of the

current trial (i.e., at around the time a response was made in

the previous trial). Congruent trials benefit from this

reduced threshold, resulting in especially fast responses. In

contrast, activation on incongruent trials accrues too slowly

to cross the threshold while it is temporarily reduced early

in the trial, resulting in no benefit. Thus, the difference in

mean RT between incongruent and congruent trials is

accentuated following congruent trials, leading to a large

congruency effect.

The opposite effect occurs following incongruent trials:

the response threshold drops later (rather than earlier) in

the current trial (i.e., again, at around the time a response

was made in the previous trial). Incongruent trials benefit

from this reduced threshold because activation has had

sufficient time to build. It is therefore able to cross the

reduced threshold, which leads to faster responses. Con-

gruent trials do not benefit, however, because responses in

these trials are usually made before the response threshold

drops. Thus, the difference in mean RT between incon-

gruent and congruent trials is reduced following incon-

gruent trials, leading to a small congruency effect. As
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described above (see also Fig. 1), a temporal learning

mechanism predicts that the congruency effect will be

larger following congruent (fast) responses than after

incongruent (slow) responses. A CSE could therefore be

produced by temporal learning, rather than by conflict

adaptation. Put differently, a mechanism that learns

exclusively based on previous response times and which is

entirely blind to congruency or conflict may be sufficient to

explain CSEs in tasks that lack feature repetition and

contingency learning confounds. If this is the case, then

accounting for the effect of previous RT on the congruency

effect should reduce the CSE. In other words, accounting

for the effect of previous RT should explain variance in the

CSE that reflects learning from previous response times.

It is important to note that the temporal learning account

of the CSE is similar to some variants of the attentional

adaptation account. For example, it is similar to the orig-

inal account of Gratton, Coles and Donchin (1992), in

which learning and expectancies also influence the CSE

(see also, Hazeltine, Akçay, & Mordkoff, 2011; Schmidt &

De Houwer, 2011). However, the temporal learning

account assumes that response time, rather than congru-

ency and/or conflict, underlies whatever learning and

expectancies lead to a CSE. Further, the adjustments of the

response threshold that result from learning about when to

respond have nothing to do with attentional adjustment at

perceptual levels of processing. Thus, while the temporal

learning hypothesis shares features with certain variants of

the attentional adaptation account, it also differs from those

variants in important ways.

As explained above, the temporal learning account

predicts a two-way interaction between previous RT and

current congruency in experiments investigating the CSE

(i.e., the congruency effect should be larger following

faster previous RTs). The temporal learning account might

also predict a three-way interaction between previous RT,

previous congruency, and current congruency. What form

might this three-way interaction take? Prior work

demonstrates that easier trial types (e.g., congruent trials)

are more strongly affected by expectancy-based changes in

response threshold than harder trial types (e.g., incongruent

trials) in both human participant and computationally

modeled data (e.g., see Kinoshita et al., 2011).

Though the reasons for this can be complex, comparing

the left and right panels of Fig. 1 can help explain why

larger effects might be expected for congruent trials.1 As

shown in the left panel, following a fast (e.g., congruent)

response, congruent trials are very likely to benefit from an

expectancy for another quick response. In contrast, fol-

lowing a slow (e.g., incongruent) response, congruent trials

are very unlikely to benefit from an expectancy for a slow

response. A congruent response is likely to be made well

before the slow expectancy starts affecting the response

threshold (i.e., unless evidence accrual happens to occur

particularly slowly on that trial). Thus, whether a congruent

trial benefits from a temporal expectancy will be strongly

determined by how early that expectancy occurs. Critically,

as shown in the right panel, some of these effects are less

pronounced for incongruent trials. Following a slow (e.g.,

incongruent) response, many incongruent trials will benefit

from an expectancy for another slow response. However,

following a fast (e.g., congruent) trial, some incongruent

1 Figure 1 roughly illustrates why the parallel episodic processing

model, discussed later, produces a larger effect of expectancy-based

changes in the response threshold for congruent relative to incongru-

ent trials. The point at which evidence for a response will begin to

increase and the steepness of the slope of increasing activation will

vary from trial to trial within both the congruent and incongruent

conditions. The evolution of the response threshold over time will

also vary from trial to trial depending on the speed of responding in

the last few trials. However, the figure demonstrates why, generally,

congruent trials are more affected than incongruent trials by

expectancies following fast congruent relative to slow incongruent

responses. Congruent trials will generally benefit from a fast

expectancy, but will ‘‘beat’’ the response threshold dip with a slow

expectancy. In contrast, incongruent trials will not only benefit from

slow expectancies, but will also often be fast enough to benefit from a

fast expectancy.
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Fig. 1 An example of temporal

learning mechanism with a fast

(left) versus a slow (right)

temporal expectancy. The thick

solid line represents the

response deadline, and the

dashed dotted lines represent

the accumulation of activation

over time for a typical

congruent and incongruent trial
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trials will benefit from an expectancy for a quick (e.g.,

congruent) response. In particular, there will often be

enough evidence to respond early (i.e., when interference is

not too overwhelming and evidence accrues quickly

enough), particularly given that the response threshold has

been reduced. Thus, the effect of expectancy-based chan-

ges in the response threshold is somewhat smaller for

incongruent than for congruent trials. Given these consid-

erations, a three-way interaction between previous RT,

previous congruency, and current congruency might be

anticipated in the human participant data from our prior

study (Schmidt & Weissman, 2014).

Analysis 1: experimental data

In Analysis 1, we conducted a linear mixed effects (LME)

model to determine the effect of previous RT on the size of

the congruency effect. As described above, the temporal

learning account predicts that the congruency effect should

increase as previous-trial RT decreases. This, in turn,

should explain some or all of the variance in the CSE. A

three-way interaction between previous RT, previous

congruency, and current congruency might also be expec-

ted, because congruent trials are thought to be more sen-

sitive to changes in the response threshold (e.g., Kinoshita

et al., 2011).

Method

We used an LME model, which includes every observation

within each participant, to determine the effects of previous

RT, previous congruency, and current congruency on cur-

rent trial RT. Experiments 1 and 2 from Schmidt and

Weissman (2014) were combined into one analysis, with

experiment included as a random effect (separate analyses

on each of the two experiments revealed the same pattern

of significant results in each experiment). For this analysis,

we did not analyze error rates. A significant CSE was

observed in the errors of Experiment 1 and there was a non-

significant trend in the same direction in Experiment 2, but

the error effects were generally much less robust than the

RT data, making it problematic to split the error data fur-

ther to assess the higher-order interactions involved in the

current LME. However, we do return to the error rate CSE

in the simulations to follow (Analyses 2 and 3).

Standard data treatments were conducted prior to

implementing the LME model. Response times for correct

trials that were preceded by correct trials during the main

part of the experiment (practice trials excluded) were

submitted to the LME regression. Similar to Kinoshita

et al. (2011; see also, Schmidt, 2013b; Schmidt, Lemercier,

& De Houwer, 2014b), response times were inverse

transformed (-1000/RT). This was a necessary step to

produce the normal distribution required for LME regres-

sion, as response time distributions are heavily skewed.

Investigation of the Q–Q plot of inverse response times

revealed the need to trim response times that were less than

300 ms on the current and previous trial to further nor-

malize the response time distribution (75 observations,

approximately 0.3 % of the data). Previous response times

were centered on the grand mean to avoid correlation with

the intercept. Analyses were run using the MIXED proce-

dure in SPSS with congruency, previous congruency, and

previous RT as fixed factors, and subjects and experiment

as random factors.

Results

Main effects

The results of the previous RT 9 previous congruency 9

current congruency LME regression are presented in

Table 1, including the model parameters and statistical

tests. Because of the inverse transform, the parameters are

inevitably difficult to interpret on their own, but the

meaning of each test will be described below. There were

three significant main effects. First, a main effect of current

congruency was observed, indicating faster responses in

congruent relative to incongruent trials. Second, there was

a main effect of previous congruency, indicating faster

responses following incongruent relative to congruent tri-

als. Third, there was a main effect of previous RT, indi-

cating that response times on the current trial varied

positively with response times on the previous trial.

Two-way interactions

There were three significant two-way interactions. First,

there was an interaction between previous congruency and

current congruency, indicating a CSE independent of pre-

vious RT. Second, previous RT interacted with current

congruency, indicating that the slower the previous RT, the

smaller was the congruency effect on the current trial. As

described in ‘‘Introduction’’, this interaction is predicted by

the temporal learning account. Third, previous RT inter-

acted with previous congruency, indicating that the rela-

tionship between current RT and previous RT was more

positive after congruent trials, relative to incongruent trials.

We discuss a potential explanation for this interaction in

Analysis 3.

Three-way interaction

The three-way interaction among previous RT, previous

congruency, and current congruency was significant,
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indicating that the relationship between previous RT and

current congruency was larger following congruent relative

to incongruent trials. This can be seen graphically in the

scatter plots presented in Fig. 2. Separate tests of the slopes

for the previous RT by current congruency interaction

following congruent and incongruent trials revealed that

the interaction was significant following congruent trials

(estimate: -0.140649; SE: 0.015067), t(10679) = -9.335,

p\ 0.001, but not following incongruent trials (estimate:

-0.017756; SE: 0.017819), t(10967) = -0.966,

p = 0.319. Thus, the congruency effect was only modified

(significantly) by previous RT following congruent trials.

Discussion

Consistent with the temporal learning account, the con-

gruency effect varied with previous RT. More specifically,

the congruency effect decreased as previous RT increased.

This interaction explains variance in the CSE, because

previous RT and previous congruency are correlated (i.e.,

congruent trials tend to be faster than incongruent trials).

Indeed, the parameter for the CSE (previous congru-

ency 9 congruency) was -0.077895 without previous RT

in the model, and only -0.054259 with previous RT in the

model. However, the CSE was still significant after

Table 1 Analysis 1: linear

mixed effects model coefficients

and statistics for

congruency 9 previous

congruency 9 previous RT on

inverse RT

Variable Estimate SE t p

Congruency 0.332724 0.006585 50.531 \0.001

prevCon -0.034202 0.006742 -5.073 \0.001

prevRT 0.286248 0.009932 28.822 \0.001

Congruency: prevCon -0.054259 0.009355 -5.800 \0.001

Congruency: prevRT -0.148572 0.013225 -11.234 \0.001

PrevCon: prevRT -0.032678 0.014996 -2.179 0.029

Congruency: prevCon: prevRT 0.130459 0.021009 6.210 \0.001

prevCon previous congruency, prevRT previous response time

Fig. 2 The correlation between

previous and current RT,

separated by previous and

current congruency
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controlling for previous RT, indicating that previous

response times are not the whole story.

Also important, there was a three-way interaction

between previous RT, previous congruency, and current

congruency. This interaction occurred because the current-

trial congruency effect was smaller after slow relative to

fast congruent trials, but roughly equivalent in size after

slow relative to fast incongruent trials. As previously dis-

cussed, the temporal learning account predicts this sort of

three-way interaction, because congruent trials are antici-

pated to be more sensitive to expectancy-based changes in

the response threshold. Thus, these initial findings seem

consistent with the temporal learning view. Nonetheless,

whether the temporal learning account can explain the full

pattern of data is not immediately apparent. To investigate

this issue, we employed computational modeling.

Analysis 2: temporal learning

The goal of Analysis 2 was to determine whether or not the

temporal learning mechanism described in ‘‘Introduction’’

produces effects that are consistent with the LME results

from Analysis 1. We therefore used the parallel episodic

processing (PEP) model of Schmidt (2013c) to simulate the

experiments reported in Analysis 1. Specifically, we used a

variant of the PEP model that has already been adapted to

learn about time for other purposes (Schmidt, 2013b). To

determine whether the model produced data that were

compatible with the experimental data, an LME model on

the simulated data was performed exactly as described in

Analysis 1.

Methods

Basic model overview

The PEP model is visually represented in Fig. 3. A full

description of the model parameters can be found in Sch-

midt (2013c). Source code for this version of the model (and

for all previous versions) can be found on the lead author’s

website (http://users.ugent.be/*jaschmid/PEP). Note that

some minor changes were made to the model in this and the

following simulation, but the model still produces item-

specific (Schmidt, 2013c) and list-level proportion con-

gruent effects (Schmidt, 2013b). Thus, any changes to the

model mentioned below do not undermine the ability of the

model to explain phenomena that it was previously reported

to simulate. Although all changes made to the model are

noted below, the only meaningful change worth noting is

that the temporal learning mechanism (described below)

was made to be more strongly influenced by recent

responses and less by older ones. This is an important

change for allowing the response speed of the immediately

preceding trial to have a noticeable impact on behavior.

The model operates as follows. Input nodes for targets

and distractors are stimulated first. Input nodes then stim-

ulate Identity nodes, where conflict can occur. Identity

nodes then stimulate Response nodes. Input nodes for

distractors also activate the Episode nodes (each

down

Response 
nodes

Input nodes 
(target)

Episode 
nodes

Input nodes 
(distracter)

Identity 
nodes

response threshold

uprightleftdownuprightleft

downuprightleft

uprightleft down

Fig. 3 A representation of the

parallel episodic processing

(PEP) model
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corresponding to one previously experienced trial) with

which they are connected. Though not relevant for the

contingency-unbiased task modeled here, Episode nodes

then bias the Response nodes with which they are con-

nected, producing contingency learning.

The key addition of Schmidt (2013b) that is most rele-

vant for the current work is that, in addition to storing the

links between stimuli and responses, each Episode also

stores the response time for the corresponding trial. These

stored response times are retrieved on subsequent trials and

bias the global response threshold of the Response nodes.

That is, the model uses memories of previous response

times to expect when to respond. Specifically, the response

threshold is reduced most when the cycle time is close to

recently stored response times (see Fig. 1). Thus, the model

is biased to respond at a similar speed as in recent trials.

Note that the model only stores information about response

times. The dips in the response threshold (i.e., temporal

expectancies) are recomputed from a new memory search

on each trial. The exact mechanism by which this is

achieved is explained in the following section.

Temporal learning mechanism

The final cycle time (i.e., simulated RT) of a trial was

recorded into each Episode node on each trial. On subse-

quent trials, this RT information was used to decrease the

response threshold as the cycle approached the stored RT.

This threshold biasing was strongest for the most recently

encoded Episode nodes. The response threshold was set

dynamically on each processing cycle using the formula,

Threshold ¼ baseline

�
Xn

i¼1

proximityi � strengthið Þ � 0:05

 !
:

ð1Þ

The threshold value was restricted between 0.30 (max-

imum decrease) and 0.45 (the baseline threshold), and the

threshold only dropped after a retrieval bias of 0.05 (in-

creased from 0.01). Proximity was calculated as

Proximityi ¼ 1 � cycle � rtið Þ2

10;000

 !
: ð2Þ

The proximity of each episode i was restricted between

0 and 1. This formula produces a value of 1 when the

current cycle time (cycle) and the stored cycle time of the

episode (rt) are identical, and decreases to a value of 0 if rt

and cycle differ by more than ±100 cycles. The strength of

episode i is determined by the formula,

Strengthi ¼
6 � lagið Þ3

500
: ð3Þ

This formula is only applied to the most recent five

Episodes (down from 40), and lag represents how many

trials previously a given Episode i occurred. The most

recent trial can have a strength value as high as 0.25, and

this decreases logarithmically as lag increases. In other

words, the most recent trial has a large impact, whereas

older trials have a much reduced impact. In the previous

version, the formula was the square of (40 - lagi) divided

by 50,000. Thus, the newer version puts more emphasis on

the most recent trials and less on older ones. This

weighting of past trials is of importance in producing a

CSE, because the effect of the immediately preceding trial

was diluted in the previous version of the model. However,

this new version not only ‘‘works’’ better for the current

purposes, but also appears more consistent with (unre-

ported) analyses of participant data that take into account

multiple previous response times. This change also reduces

the processing demands of the model substantially.

Minor model changes

Note that the model also incorporates the minor parameter

changes made in Schmidt (2013b). In addition to being

reverse compatible with the original results of Schmidt

(2013c), these minor changes are not critical for the sim-

ulations reported here and served merely to produce a more

realistic response time distribution. The only novel change

in the current instantiation is that the normal distribution of

bias scores (noise for Input nodes) averaged four rather

than three random numbers, which again did nothing more

than produce a more realistic response time distribution. To

substantially improve simulation times, Episode nodes

receiving no input and with an activation level of less than

0.0001 were no longer updated. Nodes meeting these

conditions were no longer retrievable anyway, and the new

change speeds simulation times by roughly an order of

magnitude.

Materials and design

The model was presented with the same manipulations as

those in Schmidt and Weissman (2014). Specifically, dis-

tractors were presented for 133 cycles prior to offset, fol-

lowed by a 33 cycle ‘‘blank screen,’’ and then the target for

133 cycles. We assumed that activation of the stimuli

would be reduced only slightly at offset, but that activation

would be decreased substantially for the distractor when it

was masked by the target. These effects, respectively, were

modeled as a 2 % reduction of the signal and bias values

that influence the input to the node on offset and by the

elimination of the signal from the distractor when it was

masked by the target. Adjustment of these parameters

596 Psychological Research (2016) 80:590–607
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within reasonable margins does not have a sizeable effect

on the results.

As in the experiment with human participants, there

were eight 96-trial blocks. Left and right distractors were

presented equally often with left and right targets on odd

trials, and up and down distractors were presented equally

often with up and down targets on even trials. Trials were

congruent if the distractor and target matched (e.g., left and

left) and incongruent if they mismatched (e.g., up and

down). This design prevented feature repetitions in con-

secutive trials. It also prevented contingency learning bia-

ses from being confounded with the CSE, because it paired

each distractor equally often with one congruent target and

one incongruent target (e.g., the left distractor was pre-

sented equally often with the left and right targets). Finally,

it ensured an equal number of trials in each of the four cells

of the previous congruency (congruent, incongru-

ent) 9 current congruency (congruent, incongruent)

design. Previous RT, previous congruency, and current

congruency were coded for each trial, and an LME

regression was performed identically to the one described

in Analysis 1, including data treatments, with the exception

that inspection of the Q–Q plots revealed no need for

trimming responses faster than 300 ms.

Results

Though not reported for brevity, several runs with differing

parameters were conducted (e.g., while the new mecha-

nisms were being added and bug fixed, or merely to see

whether certain parameters affected the outcome in any

notable way). The simulation results reported below were

consistently observed when reasonable adjustments of the

parameters in the PEP model were made, with two

exceptions noted below.

Traditional analysis

Before proceeding to the LME results, we first report the

results of the model using the standard analysis with

untransformed RTs and not including the previous RT

factor. In this analysis, the PEP model produced a CSE in

both the response times (effect 6 cycles), F(1,999) =

32.023, MSE = 264, p\ 0.001, and the error rates (effect:

0.34 %), F(1,999) = 82.045, MSE = 0.357, p\ 0.001.

Main effects

The results of the previous RT 9 previous congru-

ency 9 current congruency LME regression are presented

in Table 2, including the model parameters and statistical

tests. Many of the results paralleled the participant data in

Analysis 1. First, a significant congruency effect was

observed, indicating faster responses in congruent relative

to incongruent trials. Second, the main effect of previous

RT was also significant, indicating that response times on

the current trial varied positively with response times on

the previous trial. Third, the main effect of previous con-

gruency was significant, but less robust than some of the

other observed effects to changes in model parameters.

Two-way interactions

First, previous RT interacted with current congruency,

indicating that the slower the previous RT, the smaller was

the congruency effect on the current trial. As noted earlier,

this is the key prediction of the temporal learning account.

Second, while a CSE was produced by the PEP model with

the traditional analysis (i.e., using untransformed RTs and

not taking into consideration previous RT), and also in an

(unreported) LME that did not include previous RT, the

interaction between previous congruency and current con-

gruency was not significant in the current LME. This result

indicates that the model produces a CSE that is almost

entirely explained by previous RT. However, whether or

not the interaction between previous congruency and cur-

rent congruency was observed (i.e., independent of the

previous RT bias) was highly parameter dependent, much

like the main effect of previous congruency. We discuss

this in greater detail later. Third, previous RT interacted

with previous congruency. However, the form of this

interaction was opposite to that in the human participant

data: the relationship between current RT and previous RT

was more positive after incongruent trials than after con-

gruent trials. We discuss a potential explanation for this

result in Analysis 3.

Three-way interaction

Consistent with Analysis 1, the three-way interaction

among previous congruency, previous RT, and congruency

was significant: the relationship between previous RT and

current congruency was larger after congruent relative to

incongruent trials.

Discussion

The simulation results replicated most of the key findings

from Analysis 1. First, the LME model revealed that the

current-trial congruency effect decreased as previous RT

increased. Second, a CSE was produced by the PEP.

However, unlike in the human participant data, previous

RT explained most of the CSE. That is, the previous con-

gruency by current congruency interaction was no longer

significant after adding previous RT to the model. The lack

of a CSE independent of previous RT may indicate that the
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PEP model needs to be adjusted with better parameters.

Alternatively, it might suggest that previous congruency

plays a role in producing the CSE independent of previous

RT, consistent with the data of Weissman and Carp (2013).

We return to this point in the ‘‘General discussion’’.

Interestingly, the model did produce the expected three-

way interaction between previous RT, previous congru-

ency, and current congruency. Consistent with previous

work by Kinoshita et al. (2011), previous RT had a larger

influence on the current-trial congruency effect when the

previous trial was congruent relative to incongruent. The

PEP model did not, however, completely replicate the

entire pattern of human participant data. For instance, the

direction of the previous congruency by previous RT

interaction was opposite to that observed in the human

participant data. Such inconsistencies may appear to sug-

gest that the temporal learning account of the CSE is

incorrect. However, it is also possible that the temporal

learning account is correct and that a different mechanism

unrelated to the CSE explains the remaining inconsisten-

cies. The next section explores one such possible

mechanism.

Analysis 3: attentional wandering

The goal of Analysis 3 was to addresses a shortcoming of

our previous analyses. Note that in human participant data,

there are many sources of error in measurement. For

instance, there can be intra-individual differences in

response time or variance in response time (Jensen, 1992),

periods of attentional lapses (Smallwood & Schooler,

2006) or fatigue (Boksem, Meijman, & Lorist, 2005), and

other factors that impact the distribution of the data. Often

such factors are not simulated in a computational model,

which is not a problem if such factors have no qualitative

impact on the effect being modeled. As we will illustrate

shortly, however, in some scenarios unmodeled error does

have a qualitative impact.

Of particular interest for the current discussion, the

computational model in Analysis 2 provided no means by

which the size of the congruency effect could vary over

time. There is, of course, some error in the PEP model. To

produce a realistic response time distribution (and also

some errors), there needs to be some error in the inputs to

the nodes (e.g., sometimes the distracting stimulus will

accrue evidence particularly quickly, and at other times

more slowly). However, in the simulation just presented,

this random noise was not correlated from one trial to the

next. For instance, a more strongly activated distractor on

Trial n - 1 had no implications for whether or not the

distractor would again be strongly activated on the fol-

lowing trial.

More realistically, participants’ attention to the task will

vary across time (e.g., Boksem et al., 2005; Smallwood,

McSpadden, Luus, & Schooler, 2008). Thus, there will be

some periods during which the distractor has a particularly

large impact on a participant’s performance, and others

during which it has less of an impact. During the former

periods, relatively large congruency effects will be

observed on both the previous and current trial. During the

latter periods, relatively small congruency effects will be

observed. More broadly, as mentioned above, attention to

each of the stimulus dimensions likely varies across time

due to factors such as motivation and fatigue (e.g., Boksem

et al., 2005) or mind wandering (for a review, see Small-

wood & Schooler, 2006). As long as this variation of

attention occurs gradually (or, more specifically, tends to

correlate from one trial to the next), large congruency

effects will tend to be followed by large congruency

effects, and small by small (as explained earlier). We call

this view the attentional wandering hypothesis.

Attentional wandering does not produce a CSE, as we

will demonstrate later, but does have major implications

for some of the interactions involving the previous RT

factor. The consequences of such wandering are shown in

Table 3. Consider trials wherein distractor attention is

relatively high. Response times on congruent trials will be

faster than usual (increased facilitation), while response

times on incongruent trials will be slower than usual (in-

creased interference). Since attention wanders gradually,

congruency effects will be large after (a) congruent trials

Table 2 Analysis 2: linear

mixed effects model coefficients

and statistics for

congruency 9 previous

congruency 9 previous RT on

inverse RT

Variable Estimate SE t p

Congruency 0.403595 0.002738 147.431 \0.001

prevCon -0.029271 0.002746 -10.658 \0.001

prevRT 0.232377 0.002104 110.421 \0.001

Congruency: prevCon 0.004030 0.003893 1.035 0.301

Congruency: prevRT -0.128511 0.002977 -43.163 \0.001

prevCon: prevRT 0.050426 0.003202 15.748 \0.001

Congruency: prevCon: prevRT 0.022079 0.004534 4.869 \0.001

prevCon previous congruency, prevRT previous response time
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with relatively fast response times and (b) incongruent

trials with relatively slow response times. Now, consider

trials in which attention to the distractor is relatively low.

Response times on congruent trials will be slower than

usual (decreased facilitation), while response times on

incongruent trials will be faster than usual (decreased

interference). Congruency effects will therefore be small

after (a) congruent trials with relatively slow response

times and (b) incongruent trials with relatively fast

response times.

In sum, larger current-trial congruency effects should be

associated with faster previous congruent RTs and with

slower previous incongruent RTs. Thus, periods of atten-

tional wandering should contribute to the three-way inter-

action among previous congruency, previous RT, and

current congruency that we observed in the human partic-

ipant data. It is important to reiterate that the attentional

wandering mechanism simply makes the congruency effect

at a given point in the experiment somewhat correlated

with the magnitude of congruency effects in recent trials.

While this assumption appears reasonable, we directly test

it in Analysis 4.

Given the considerations above, we investigated whe-

ther combining the temporal learning and attentional

wandering mechanisms might provide a more complete

account of the human participant data than the temporal

learning mechanism alone. Notably, a model that combines

these mechanisms should still produce a three-way inter-

action among previous congruency, previous RT, and

current congruency. After congruent trials, both temporal

learning and attentional wandering should produce smaller

congruency effects after relatively slow response times

than after relatively fast response times. Following incon-

gruent trials, however, the situation is more complex.

While the temporal learning mechanism should produce

smaller congruency effects after relatively slow response

times than after relatively fast response times, the atten-

tional wandering mechanism should produce the opposite

pattern. Thus, the two mechanisms should tend to coun-

teract each other. This property should lead to a three-way

interaction among previous congruency, previous RT, and

current congruency. It may also explain why, in the human

participant data, previous RT influenced the current-trial

congruency effect after congruent trials, but not after

incongruent trials.

A combination of temporal learning and attentional

wandering mechanisms should also produce a two-way

interaction between previous congruency and previous RT of

the correct form (i.e., an interaction wherein previous RT is

more predictive of current RT when the previous trial is

congruent, relative to incongruent). To understand why, first

consider that a relatively quick response in an incongruent

trial could arise via: (1) a temporal expectation to make a fast

response or (2) a reduction of attention to the distractor. In

the former case, response time should be facilitated more in a

subsequent congruent trial than in a subsequent incongruent

trial, because congruent trials are more likely to benefit from

an expectancy to respond quickly than incongruent trials. In

the latter case, response time should be facilitated more in a

subsequent incongruent trial than in a subsequent congruent

trial, because a reduction of attention to the distractor should

both reduce interference in an incongruent trial (thereby

speeding RT) and reduce facilitation in a congruent trial

(thereby slowing RT). Thus, a relatively quick response in a

previous incongruent trial should not be strongly predictive

of current RT, because response speed in the current trial

depends on why the previous incongruent trial RT was faster

than usual.

Next, consider that a relatively quick response in a

congruent trial could arise from (1) a temporal expectation

to make a fast response or (2) an increase of attention to the

distractor. Both of these mechanisms should facilitate

response time more in a subsequent congruent trial than in

a subsequent incongruent trial. Thus, a relatively quick

response in a previous congruent trial should be strongly

predictive of current response time, because response speed

in the current trial should not depend on why the previous

congruent trial RT was faster than usual. In short, com-

bining the temporal learning and attentional wandering

mechanisms should lead to a stronger relationship between

Table 3 Example of attentional

wandering account
Previous congruency Previous RT Distractor attention Current congruency Current RT

Incongruent : High Incongruent :

Congruent ;

; Low Incongruent ;

Congruent :

Congruent : Low Incongruent ;

Congruent :

; High Incongruent :

Congruent ;

: = longer (slower) RT, ; = shorter (faster) RT
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previous RT and current RT when the previous trial was

congruent as compared to incongruent. Thus, a model that

combines these mechanisms could produce an interaction

between previous congruency and previous RT of the

correct form.

Perhaps the attentional wandering hypothesis lacks a

certain level of intuitive appeal because it suggests some-

what complex relationships among previous congruency,

previous RT, and current congruency. The only assumption

the account makes, however, is that attention to the dis-

tractor varies gradually over time, which appears reason-

able (e.g., Boksem et al., 2005; Smallwood et al., 2008).

Further, the complex predictions of this account are merely

the logical by-products of this assumption. Indeed, even the

exact mechanism and the way we program it in the model

are not so crucial: as long as we assume (for one reason or

another) that the size of the congruency effect varies

gradually over time and correlates from one trial to the

next, the same conclusions follow. The current simulation

simply aims to add a more realistic ‘‘structure’’ to the

random error in the model. We therefore investigated

whether combining the temporal learning and attentional

wandering mechanisms within a single model could better

account for the human participant data.

Methods

Key model changes

The PEP model from Analysis 2 was adapted such that the

signal strength (i.e., the input activation of a presented

stimulus) of activated distractor Input nodes was increased or

decreased randomly from trial to trial. The signal value was

increased or decreased by a small amount on each trial, and

how much the signal changed in a given direction on a given

trial was partly determined by the increase or decrease on the

previous trial. Specifically, the signal for the presented dis-

tractor on a given trial was determined with the formula

Signaln ¼ signaln�1 0:9ð Þ þ signalbase 0:1ð Þ
þ deflectionn: ð4Þ

The signal of a given trial n is thus highly similar to that

of the previous trial (n - 1), but is regressed partially

toward the normal (base) signal of 0.9 (i.e., to prevent a

runaway increase or decrease). The signal is able to deviate

from the base value with the deflection parameter, calcu-

lated with the formula,

Deflectionn ¼ deflectionn�1 0:95ð Þ þ randomn 0:05ð Þ:
ð5Þ

The deflection on a given trial n is thus highly similar to

the deflection on the previous (n - 1) trial and is adjusted

by the random parameter added on each trial (a random

normal number between -1 and ?1 created by subtracting

one random number from another). The deflection param-

eter thus works to occasionally gradually increase or

decrease for a string of trials, but has the tendency to

regress back to a baseline value of 0 over time, a bit similar

to Formula 4. The net result of the two formulas is that the

signal value will tend to hover around 0.9 with the occa-

sional string of trials with either increased or decreased

values, simulating periods of high and low distractor

attention, respectively.

Design

The design was identical in all respects to Analysis 2. The

only difference between Analyses 2 and 3 was the change

to the PEP framework mentioned above, which involved

adding an attentional wandering mechanism.

Results

The modeling results were tolerant of reasonable changes

in model parameters and to a greater extent than in the

previous simulation.

Traditional analysis

Before proceeding to the LME results, we first report the

results of the model using the standard analysis with

untransformed RTs and not including the previous RT

factor. In this analysis, the PEP model produced a CSE in

both the response times (effect: 11 cycles),

F(1,999) = 107.751, MSE = 264, p\ 0.001, and the error

rates (effect: 0.79 %), F(1,999) = 278.074, MSE = 0.056,

p\ 0.001.

Main effects

The results of the previous RT 9 previous congru-

ency 9 current congruency LME regression on the PEP

data are presented in Table 4, including the model

parameters and statistical tests. Critically, the pattern of

statistically significant results was identical to the par-

ticipant data from Analysis 1. First, there was a main

effect of current congruency, indicating faster responses

on congruent relative to incongruent trials. Second,

there was a main effect of previous congruency, indi-

cating faster responses following incongruent relative to

congruent trials. Third, there was a main effect of

previous RT, indicating that response times on the

current trial were correlated with response times on the

previous trial.
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Two-way interactions

As in the human participant data, there were three two-way

interactions. First, there was a marginal interaction between

previous congruency and current congruency, indicating a

CSE. This effect was again sensitive to parameter changes,

but less so than in Analysis 2. Second, previous RT interacted

with current congruency, indicating that the slower the pre-

vious RT, the smaller was the congruency effect on the

current trial. Though excluded for brevity, a CSE was absent

if the temporal learning mechanism was lesioned, leaving

only the attentional wandering mechanism. In contrast, a

CSE was present when only the temporal learning mecha-

nism was included in the model (Analysis 2). These results

indicate that the temporal learning mechanism, rather than

the attentional wandering mechanism, is what produces the

CSE in the combined model. Third, as in the human partic-

ipant data in Analysis 1 (but unlike in the simulated data in

Analysis 2), previous RT interacted with previous congru-

ency, because the relationship between previous RT and

current RT was more positive after congruent relative to

incongruent trials. In short, while the attentional wandering

mechanism did not produce a CSE, it helped to produce other

patterns observed in the human participant data.

Three-way interaction

The three-way interaction among previous RT, previous

congruency, and current congruency was significant, indi-

cating that the relationship between previous RT and cur-

rent congruency was larger following congruent relative to

incongruent trials. Separate tests of the slopes for the

previous RT by current congruency interaction following

congruent and incongruent trials revealed that the interac-

tion between previous RT and current congruency was

significant following both congruent trials (estimate:

-0.238294; SE: 0.003073), t(377375) = -77.542,

p\ 0.001, and incongruent trials (estimate: -0.094205;

SE: 0.003289), t(373184) = -28.645, p\ 0.001, even

though it was of smaller magnitude in the latter case. It

should be noted that with 1000 simulated participants,

these tests had exceptionally high power. Thus, the dif-

ference between the significant effect following incongru-

ent trials in the simulated data relative to the non-

significant effect with 32 human participants should prob-

ably not be interpreted too strongly, especially since the

effect trended in the same direction in the participant data.

The important point is that the current-trial congruency

effect was modulated more strongly by previous RT when

the previous trial was congruent, relative to incongruent,

just like it was in the human participant data.

Discussion

The results of Analysis 3 provided a better fit to the human

participant data considered in Analysis 1 than did the

results of Analysis 2. Indeed, while the temporal learning

mechanism in Analysis 2 failed to perfectly replicate the

pattern of significant results observed in Analysis 1, the

addition of an attentional wandering mechanism in Anal-

ysis 3 led the model to replicate the key findings from

Analysis 1. In fact, Analysis 3 yielded the same pattern of

significant results as Analysis 1, with the single exception

of an additional effect of previous RT on current congru-

ency following incongruent trials. As mentioned previ-

ously, this result likely indicates greater power of the

1000-participant simulated sample than for the 32-partici-

pant human sample (which yielded a trend in the same

direction). These results suggest that a temporal learning

account provides a plausible explanation for the significant

CSEs observed by Schmidt and Weissman (2014), as long

as it is assumed that the congruency effect is of similar

magnitude from one trial to the next (e.g., due to attentional

wandering, fatigue, or other factors).

Analysis 4: attentional wandering and participant
data

Analysis 3 showed that a simulated temporal learning

mechanism fits the human participant data when an addi-

tional attentional wandering mechanism leads the

Table 4 Analysis 3: linear

mixed effects model coefficients

and statistics for

congruency 9 previous

congruency 9 previous RT on

inverse RT

Variable Estimate SE t p

Congruency 0.425058 0.002795 152.082 \0.001

prevCon -0.027601 0.002809 -9.826 \0.001

prevRT 0.319882 0.002042 156.654 \0.001

Congruency: prevCon -0.007196 0.003988 -1.804 0.071

Congruency: prevRT -0.238294 0.002905 -82.038 \0.001

prevCon: prevRT -0.050388 0.003205 -15.721 \0.001

Congruency: prevCon: prevRT 0.144088 0.004554 31.642 \0.001

prevCon previous congruency, prevRT previous response time
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congruency effect to be correlated across trials. This result

adds credence to the notion that temporal learning might

explain the CSE in our task if we assume that the con-

gruency effect at one point in time is correlated with the

congruency effect at the next point in time. While this

assumption appears reasonable, in Analysis 4 we directly

tested its validity. In particular, we reanalyzed the human

participant data of Schmidt and Weissman (2014) to

determine whether the congruency effect is, in fact, cor-

related across trials.

To conduct this analysis, we split the data from each block

into smaller (i.e., ‘‘mini’’) blocks of trials and computed the

congruency effect for each mini-block. We then tested

whether the congruency effect was correlated across mini-

blocks within each participant. Specifically, we tested whe-

ther the size of the congruency effect in each mini-block

predicts the size of the congruency effect in the next mini-

block. We reasoned that such an effect would justify our

assumption that the congruency effect is correlated across

time. It would also show that the model makes at least one

novel prediction that can be verified in human participants.

Method

In Analysis 4, we divided each 96-trial block of Schmidt

and Weissman (2014) into four mini-blocks of 24 trials

(mini-block duration: 48 s). We reasoned that mini-blocks

of 24 trials would provide sufficient temporal resolution for

detecting transient changes in the congruency effect across

time. Moreover, we reasoned that such mini-blocks would

provide a sufficient number of observations per cell (e.g.,

there was only one empty cell for one participant with this

analysis).

Dividing 8 blocks of 96 trials in this manner produced

32 mini-blocks. The first mini-block of each larger block

was excluded from subsequent analysis because it was not

preceded by a mini-block (i.e., because there was a pause

between blocks). Thus, each participant had 24 estimates of

the current block congruency effect (dependent variable),

each of which was associated with an estimate of the

previous block congruency effect (predictor variable).

Using these estimates, we employed a linear mixed effect

model to test whether the size of the congruency effect in

the previous mini-block predicted the size of the congru-

ency effect in the current mini-block. The intercept for

each participant was added as a random effect into the

model to control for between-participant differences in the

overall size of the congruency effect.

Results

As predicted, an LME regression revealed that the size of

the congruency effect in the previous mini-block was

positively related to the size of the congruency effect in the

current mini-block (estimate: 0.103321; standard error:

0.035751), t(765) = 2.890, p = 0.004. Supplementary

analyses revealed that the size of this relationship did not

differ between Experiments 1 and 2 of Schmidt & Weiss-

man (2014), F(1,763) = 0.348, p = 0.555. The effect was

also still present, and of comparable magnitude, after

controlling for mean mini-block RT (estimate: 0.112647;

standard error: 0.035981), t(764) = 3.131, p = 0.002.

Discussion

The results of Analysis 4 justify our addition of the

attentional wandering mechanism to the PEP model in

Analysis 3. Indeed, consistent with the operation of such a

mechanism, the size of the congruency effect in each

24-trial mini-block of human participant data predicted the

size of the congruency effect in the next mini-block. This

result justifies our use of this mechanism to explain the

interactions involving previous RT that we observed in the

preceding analyses. It also confirms that a novel prediction

of the PEP model can be verified in human participant data.

It is important to reiterate that while the attentional

wandering mechanism explains interactions involving

previous RT, it does not explain the CSE. For this reason,

neither the exact mechanism that leads the congruency

effect to be correlated across time nor the exact manner in

which we model this mechanism is crucial. Put differently,

as long as we assume (for one reason or another) that the

congruency effect varies gradually over time, such that its

magnitude correlates across trials, the current instantiation

of the PEP model will fit the human participant data. Thus,

our finding in Analysis 4 that the size of the congruency

effect is correlated across time further demonstrates the

viability of a temporal learning mechanism for explaining

the CSE.

General discussion

The current paper extends the work we presented in Sch-

midt and Weissman (2014). In that paper, we observed a

CSE in a prime-probe task, wherein we were able to rule

out feature integration and contingency learning confounds

by design. Although there may be a bias to interpret this

finding as strong evidence for conflict adaptation, the

present results suggest that it may be due, in whole or in

part, to temporal learning.

Temporal learning

A key finding of the present study was that previous

response times were related to current-trial congruency
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effects in the human participant data (Analysis 1).

Specifically, slower previous RT was associated with

smaller congruency effects on the current trial. This finding

is consistent with the temporal learning account. Interest-

ingly, this result was observed only when the previous trial

was congruent. Following incongruent trials, there was no

(significant) relationship between previous RT and the

current-trial congruency effect, resulting in a three-way

interaction among current congruency, previous congru-

ency, and previous RT.

Analysis 2 further demonstrated that a simple modeled

version of the temporal learning account produced not only

a two-way interaction between previous RT and current

congruency, but also a three-way interaction among pre-

vious RT, previous congruency, and current congruency.

Thus, the model mirrored many of the important effects in

the human participant data. However, the initial model did

fail to explain some of these data. For example, Analysis 2

produced a previous congruency by previous RT interac-

tion of the wrong form. Further, the CSE was almost

entirely explained by previous RT in the modeled data,

which was not the case in the human participant data. A

simple temporal learning mechanism on its own therefore

appeared insufficient to account for all of the data. How-

ever, as discussed in the following section, this initial

simulation employed a model that did not allow for gradual

changes in the magnitude of the congruency effect over

time.

Temporal learning plus attentional wandering

A problem with the first instantiation of the PEP model in

Analysis 2 was that the model provided for no variance in

the size of the congruency effect across the duration of the

task. This is obviously unrealistic, as Analysis 4 demon-

strated. Indeed, each participant’s ability to focus on the

target, rather than on the distractor, will likely vary grad-

ually over time, as a result of factors like fatigue, distrac-

tion, or motivation (Boksem et al., 2005; Smallwood et al.,

2008). Analysis 3 therefore explored the possibility that the

temporal learning model might better fit the human par-

ticipant data if such variation in the congruency effect over

time was assumed. In particular, we assumed that vari-

ability in the size of the congruency effect might be

explained by an ‘‘attentional wandering’’ mechanism.

As described earlier, this mechanism assumes that

attention to the distractor varies gradually over the course

of the experiment, leading to relatively large congruency

effects when distractor attention is high and to relatively

small congruency effects when distractor attention is low.

Critically, adding this mechanism to the model did help to

explain the remaining interactions in the data, even though

it did not explain the CSE. That is, the attentional

wandering mechanism itself did not produce a CSE and is

not an account of the CSE per se. However, when com-

bined with the temporal learning mechanism in Analysis 3,

the overall pattern of human participant data was repro-

duced. This result demonstrates that the temporal learning

account can provide a good fit to the human participant

data as long as it is assumed that the magnitude of the

congruency effect varies over the course of the experiment.

Analysis 4 validated this assumption by demonstrating that

the size of the congruency effect was correlated across

successive 24-trial ‘‘mini-blocks’’ of the human participant

data. Thus, the temporal learning account provides a viable

explanation of the CSEs observed by Schmidt & Weissman

(2014).

Conflict adaptation

While the present work indicates the plausibility of a

temporal learning account of the CSE in the prime-probe

task, it does not inherently rule out the conflict adaptation

account as a viable alternative. In the following section, we

discuss how different variants of the conflict adaptation

account may or may not be able to explain the present

findings.

To begin, the conflict adaptation account may be able to

explain the relationship we observed between previous-

trial RT and the size of the congruency effect. Yeung,

Cohen, and Botvinick (2011) suggested that response

conflict varies on a trial-by-trial basis with RT within both

the congruent and incongruent conditions. More specifi-

cally, they argued that conflict is greater in trials with

relatively long RTs than in trials with relatively short RTs,

even within the congruent condition. Although it may

initially seem surprising to talk about response conflict in

congruent trials (Grinband et al., 2011), it could arise in

various ways (Abrahamse & Braem, 2015; Desender, Van

Opstal, & Van den Bussche, 2014; e.g., participants might

prepare the wrong response prior to stimulus onset, which

conflicts with the correct response that must ultimately be

executed). Yeung and colleagues further suggested that RT

is a rough estimate of experienced response conflict. Thus,

analogous to the temporal learning account, this version of

the conflict adaptation account might predict an interaction

between previous RT and current congruency (i.e., because

variations in previous RT are due to variations in conflict).

More specifically, a slow response in the previous trial

(indexing heightened conflict) should be followed by a

smaller congruency effect in the current trial, whereas a

fast response in the previous trial (indexing reduced con-

flict) should be followed by a larger congruency effect.

However, although the above-mentioned variant of the

conflict adaptation account might be construed to predict a

relationship between previous RT and the congruency
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effect, it is less clear whether it would predict some of our

other findings. For instance, if previous RT is a measure of

previous-trial conflict independent of previous-trial con-

gruency, then one might suppose previous RT should be

equally related to the size of the congruency effect fol-

lowing congruent and incongruent trials. That is, one might

suppose there should be no interaction between previous

RT, previous congruency, and current congruency. Instead,

we observed that previous RT is only related to the size of

the congruency effect following congruent trials.

Nonetheless, the variant of the conflict adaptation

account that Yeung et al. (2011) propose is just one version

of the notion that participants adapt to response conflict. As

an example of a different version, Botvinick et al. (1999)

suggested that ‘‘compatible trials are unlikely to induce

conflict, regardless of context’’ (p. 180). This version

suggests that there is inherently more conflict in incon-

gruent relative to congruent trials, which might help to

explain why there was an effect of previous congruency on

the congruency effect independent of previous RT. This

version might also predict a stronger effect of previous RT

following incongruent trials (wherein conflict is relatively

high) than following congruent trials (wherein conflict is

relatively low), which we did not observe. However, yet

another version of the notion that participants adapt to

response conflict suggests that attention is widened in

response to the absence of conflict on congruent trials,

rather than narrowed in response to the presence of conflict

on incongruent trials (Compton, Huber, Levinson, &

Zheutlin, 2012; Lamers & Roelofs, 2011). This version

might therefore better explain why previous-trial RT

influences the congruency effect to a greater degree when

the previous trial was congruent as compared to incon-

gruent. In sum, depending on the version considered, the

conflict adaptation account may also be able to explain the

present findings.

Finally, it might be possible to explain the present

findings by combining the conflict adaptation mechanism

with the attentional wandering mechanism (or something

similar), analogous to the way in which we combined the

temporal learning mechanism with the attentional wan-

dering mechanism. For instance, such an adaptation-wan-

dering account might combine the assumption that

previous RT is a measure of experienced conflict (Yeung

et al., 2011) with the assumption that attention to the dis-

tractor varies slowly across time. As in our account, the

wandering mechanism in the adaptation-wandering account

would magnify the relationship between previous congru-

ent-trial RT and the current-trial congruency effect, while

reducing the relationship between previous incongruent-

trial RT and the current-trial congruency effect. This

variant of the conflict adaptation account might therefore

explain not only the CSE, but also some of the higher-order

interactions we observed. Future modeling research could

be aimed at more formally investigating this possibility.

As the text above indicates, it is possible that a variant of

the conflict adaptation account can explain the present

results. It is also possible that conflict adaptation explains

some of the observed effects, and that other processes (e.g.,

attentional wandering) account for the remaining patterns

of data. Thus, the present results do not rule out a role for

conflict adaptation in engendering the CSE. What they do

provide, however, is a demonstration that there is cause for

concern in interpreting the CSE as solely reflecting conflict

adaptation, even in experiments that are not biased by

contingencies and feature repetitions. Other explanations

(e.g., temporal learning) remain viable.

Limitations

One limitation of the present study is that previous RT did

a much better job of explaining the simulated CSE in the

modeled data than of explaining the CSE in the human

participant data. That is, the PEP model produced a CSE in

the standard analysis, but once previous RT was added to

the LME model the CSE was considerably reduced. Of

course, the CSE is supposed to be reduced by adding

previous RT to the model according to the temporal

learning account. However, this effect was more pro-

nounced in the simulated data than in the human partici-

pant data.

Nonetheless, the PEP model did produce a CSE inde-

pendent of previous RT in Analysis 3. However, variance

in the CSE explained by previous RT still differed between

the model and the participant data. This finding suggests

two possible interpretations. First, the parameters (or pre-

cise mechanisms) of the computational model may have

lacked precision. Perhaps with better parameters or with an

adjustment in the way the model calculates temporal

expectancies, the simulated data would have matched the

participant data even better than it did. Second, expecta-

tions about congruency may have played a role in pro-

ducing the CSE, as initially proposed by Gratton et al.

(1992; see also the congruency switch cost hypothesis;

Hazeltine et al., 2011; Schmidt, 2014; Schmidt & De

Houwer, 2011). Such an interpretation might explain why

there was an effect of previous congruency on the CSE

independent of previous RT. It would also be consistent

with recent data, indicating a significant CSE can be

observed following RT-matched congruent and incongru-

ent trials (Weissman & Carp, 2013).

A second limitation of the present work is that the

temporal learning account does not clearly explain why

CSEs can be observed independent of feature repetition

and contingency confounds in our prime-probe tasks, but

not in the classic Stroop and flanker tasks (e.g., Schmidt &
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De Houwer, 2011; but see Duthoo et al., 2014). One pos-

sible explanation is that pre-presentation of the distractor in

the prime-probe task enables participants to better judge

when the upcoming target will appear (because the dis-

tractor appears at a predictable interval beforehand), which

helps participants to lower the response threshold at the

appropriate time (Weissman, Egner, Hawks, & Link,

2015). Another possible explanation is that our prime-

probe task prevents feature repetitions by design. Although

feature repetitions were not analyzed in the above-men-

tioned studies, they were still present in the task. Feature

repetitions speed some trials substantially (e.g., complete

repetition trials by as much as 200 ms), potentially making

the timing of responses across trials less predictable. This

might cause the temporal expectancy mechanism to fail,

because temporal learning is likely most effective when

response timing is predictable. Future studies could be

conducted to directly investigate these possibilities.

Given the considerations above, we acknowledge that a

simple temporal learning account may not fully account for

the CSE. One advantage of this account, however, is par-

simony. While the PEP model is not less computationally

complex than the conflict monitoring model, it proposes

that the CSE reflects the operation of non-controversial

contingency and temporal learning processes, rather than

that of additional conflict monitoring and attentional

adaptation processes. These contingency and temporal

learning processes are thought to explain a wide range of

basic learning phenomena. Indeed, as outlined in Intro-

duction, knowledge about time and contingency is the most

fundamental requirement for learning about the world

around us. Critically, due to the operation of these non-

controversial learning processes, participants are biased to

respond with a rhythmic pace that engenders a CSE. Thus,

a simple temporal learning account in which the CSE is an

incidental result of non-controversial learning processes

appears maximally parsimonious. In contrast, proposing

the addition of a mechanism that monitors for conflict and

yet another that alters the distribution of attention to

stimulus features in response to this conflict may add

unnecessary complexity. The simplest account is not

always the correct account, however. For this reason,

additional research will be needed before drawing any firm

conclusions.

Along these lines, a third limitation of the present study

is that we cannot exclude the possibility that a mechanism

other than temporal learning or conflict adaptation may

account for our results. For example, consider the activa-

tion-suppression hypothesis (Ridderinkhof, 2002), which is

an extension of dual-route models in which different

pathways underlie the activation of responses associated

with target and distractor stimuli (e.g., Kornblum, Has-

broucq, & Osman, 1990). According to this hypothesis,

suppression of the distractor pathway is greater after

incongruent relative to congruent trials, resulting in a CSE

(Ridderinkhof, 2002). Further, suppression of the response

associated with a distractor, which may ramify into sup-

pression of the entire pathway in the next trial, increases

with RT in both congruent and incongruent trials (Wylie,

Ridderinkhof, Bashore, & van den Wildenberg, 2010).

Thus, similar to the temporal learning account, the acti-

vation-suppression hypothesis appears to predict both a

CSE and that the current-trial congruency effect will be

larger when previous RT was fast (low suppression) rela-

tive to slow (high suppression). Bolstering this possibility,

suppression influences performance more when a distractor

appears prior to a target (as in our prime-probe tasks) rel-

ative to simultaneously with a target (as in more typical

Stroop and flanker tasks), likely because presenting a dis-

tractor before a target allows suppression of the response

associated with the distractor to begin earlier in each trial

(Burle, van den Wildenberg, & Ridderinkhof, 2005).

Without a formally specified model, however, it is difficult

to know whether the activation-suppression account can

effectively explain the complex pattern of results observed

in Analysis 1. Future computational modeling and experi-

mental research could therefore be aimed at determining

whether the temporal learning account, the conflict moni-

toring account, the activation-suppression account, or some

other model best explains the present findings.

Conclusions

This paper presents the novel idea that temporal learning

might explain CSEs that are observed after controlling for

feature repetition and contingency learning biases. Con-

sistent with this proposal, our findings suggest that a tem-

poral learning mechanism provides a plausible account of

the CSE in the prime-probe task, especially if it is assumed

that attention to the distractor ‘‘waxes and wanes’’ gradu-

ally over trials. The conflict adaptation account does have

intuitive appeal, however, and may still explain a part of

the CSE in paradigms that do not contain feature integra-

tion or contingency learning biases, such as the one

employed here. The present findings, however, suggest that

it is important for researchers to entertain the possibility

that other mechanisms besides conflict adaptation can

explain the CSE. Indeed, even if conflict adaptation

explains part of the CSE, considering other possible

mechanisms, such as those explored in the present manu-

script, may eventually lead to the discovery of important

new processes that influence behavior.
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