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Abstract

GABAergic inhibition via local interneurons may play a role in enhancing spike timing precision in principal cells, since it tends to

eliminate the influence of initial conditions. However, both the number and the timing of inhibitory synaptic events may be variable

across repeated trials. How does this variability affect the spike timing precision in principal neurons? In this paper, we derive an

analytical expression for the spike output jitter as a function of the variability of the received inhibition. This study predicts that variable

inhibition is especially tolerated as the number of inhibitory cells is large and the decay time constant of the GABAergic synapse is small,

which is consistent with experimental data from early olfactory systems (antennal lobe for insects, olfactory bulb for vertebrates).

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental evidence tends to show that precise spike
timing plays a significant role in the encoding of sensory
stimuli [23]. A pre-requisite is that neurons fire spikes in a
precise and reproducible way over repeated presentations of
the same stimulus. Both experimental studies and theore-
tical work have shown that the neural response can indeed
be precise and reliable, depending on the nature of the input
[13,3,8]. Fast varying aperiodic stimuli lead to precise spike
timing while constant or slowly varying stimuli yield
imprecise firing. All natural stimuli, however, do not have
a high-temporal bandwidth. For example, in comparison
with sounds or images, odors change more slowly.

Olfaction is generally a slow-temporal bandwidth sense.
Olfactory receptor neurons converge onto glomeruli that
present a slow dynamics of activation [18]. Thus, olfactory
bulb mitral cells (MCs), excited by one or few glomeruli,
receive slowly varying inputs. It is known that MCs have an
unreliable spiking activity under constant stimulation [1].
e front matter r 2006 Elsevier B.V. All rights reserved.
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Despite this fact, someMCs present in vivo synchronization
with precise spiking activity [9,7]. In the olfactory bulb,
MCs receives inhibition from inhibitory granule cells (GCs).
The received inhibition could be responsible of the precision
of individual MCs, since it tends to eliminate the influence
of initial conditions [2,10]. However, GABAergic inhibition
released by the GCs and received by the MCs is
asynchronous and variable across repeated trials [19,22].
How does the variability in the received inhibition affect the
precision of principal cells? To address this question we
shall use a quadratic integrate-and-fire neuron model that
allows for analytic calculations. In Section 2, we describe
our model and present simulations showing that GABAer-
gic inhibition may enhance spike timing precision. In
Section 3, we derive an approximate analytical expression
for the spike output jitter as a function of the variability of
the received inhibition. In Section 4, we demonstrate the
validity of this approximation with simulation results. In
Section 5, we discuss the predictions obtained from our
study.
2. Model description and simulations

We consider here the quadratic integrate and fire (QIF)
model which is known to be a very good approximation of
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Fig. 1. Without GABAergic inhibition, the spike time jitter sT increases

over time. The different curves indicate the temporal evolution of the spike

time jitter sT estimated over 100 repeated simulations of the QIF neuron

(Eq. (1)). In the simulations, I ¼ 0:15nA, IGABA ¼ 0 and snoise ranges

from 0:03 to 0:12 nA. Two examples of spike rasters obtained from 100

trials are indicated for snoise ¼ 0:03 and 0:12nA.
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Fig. 2. Synchronous GABAergic inhibition enhances spike timing

precision. Mean and standard deviation of the first spike latency as a

function of the input current I have been estimated over 100 repeated

simulations of the QIF neuron (Eq. (1), snoise ¼ 0:05nA). The top curve is

for IGABAa0 whereas the one at the bottom is for IGABA ¼ 0. IGABAa0

was obtained by the summation of 100 synchronous synaptic events

occurring at time tf ¼ 0 and modeled by Eq. (2). Two spike rasters,

obtained from repeated trials with I ¼ 0:14 nA, are indicated for IGABA ¼

0 and IGABAa0.
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any type 1 neuron [6]. The time evolution of the membrane
potential V is described by the following equation

C
dV

dt
¼ qðV ðtÞ � VT Þ

2

þ I � I th � IGABAðtÞ þ InoiseðtÞ ð1Þ

in which I is a constant input current, I th denotes the
minimal current required for repetitive firing, Inoise is an
intrinsic white noise current of standard deviation snoise
and IGABA is a synaptic inhibitory current. In the absence
of any noise and synaptic current, the QIF neuron
converges to the resting potential V rest when I ¼ 0 and
fires as soon as V reaches the threshold V th, when IXI th.
Right after the spike, V is reset to the value V reset. The
membrane capacitance C and resting potential V rest have
been derived from MC experimental data [12,16]. The
other parameters have been fitted in order to obtain a
similar frequency-current response as the MC conduc-
tance-based model in [20]. The parameters chosen for the
QIF neuron are as follows: C ¼ 0:2 nF, V rest ¼ �65mV,
V T ¼ �60:68mV, q ¼ 0:00643msV�1, I th ¼ 0:12 nA;V th ¼

30mV and V reset ¼ �70mV. The inhibitory synaptic current
IGABAðtÞ in Eq. (1) results from the summation of
GABAergic synaptic events originating from interactions
with GCs. An unitary event, occurring at time tf , is modeled
by a simple exponential inhibitory post-synaptic current
(IPSC). For tXtf , we have

IPSCðtÞ ¼ g e�ðt�tf Þ=tðV ðtÞ � EGABAÞ. (2)

The maximum synaptic conductance is g ¼ 1 nS [16], the
synaptic time decay is t ¼ 6ms [14] and the reversal
potential of the synapse is EGABA ¼ �70mV. Simulations
were performed by integrating Eq. (1) with a fourth-order
Runge–Kutta method with time step of 0.05ms. Unless
specified otherwise, the following random initialization was
used. The initial membrane potential V ðt ¼ 0Þ is taken
randomly between V reset and V th such as the firing times
obtained over repeated trials, from Eq. (1) with IGABA ¼ 0
and Inoise ¼ 0, are uniformly distributed.

The QIF neuron is precise when its firing time T stays
unchanged across repeated trials with the same input
current I. A measure of precision is the spike time jitter sT

which characterizes the temporal dispersion around cluster
firing times induced by repeated trials (precise
neuron ¼ small sT ). Fig. 1 shows the temporal evolution
of sT , estimated over 100 repeated simulations of the QIF
neuron (Eq. (1)), with IGABA ¼ 0 and different snoise values.
The initial condition V ðt ¼ 0Þ was similar in all trials. Due
to Inoise, the spike time jitter sT increases over time so that
the neuron becomes more and more imprecise. This is in
agreement with previous works [13,3,8]. To see if the first
spike can convey some information about the input, we
performed repeated simulations for different I and random
initial conditions. Fig. 2 shows the mean and standard
deviation sT of the first spike latency for a QIF neuron,
with and without GABAergic inhibition. When IGABAa0,
100 synchronous IPSCs are generated at time tf ¼ 0
according to Eq. (2). From Fig. 2, we see that sT is very
large when IGABA ¼ 0 and very small when IGABAa0.
GABAergic inhibition makes the neuron more precise so
that its firing time T is a reliable estimate of I. Two
examples of spike rasters are indicated in Fig. 2 for I ¼

0:14 nA and for IGABA ¼ 0 and IGABAa0. Could increased
precision be obtained with excitation rather than
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Fig. 3. Inhibitory versus excitatory control of spike timing precision. Plain

and dashed curves represent the spike time jitter sT as a function of the

number of received EPSCs and IPSCs, respectively. The spike time jitter

was estimated after t ¼ 200ms on 1000 repeated simulations with I ¼

0:14 nA and random membrane potential initialization. Synaptic events

were injected synchronously at t ¼ 30ms and their number varied in the

simulations from 0 to 150. Two examples of spikes rasters are indicated for

100 IPSCs (left inset) and EPSCs (right inset).
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inhibition? To address this question, we performed
repeated simulations with a synaptic excitatory current
IAMPA replacing the GABAergic current in Eq. (1). IAMPA

results from the summation of unitary excitatory post-
synaptic currents (EPSC) similar to Eq. (2) except that the
reversal potential is now EAMPA ¼ 0mV [4]. EPSCs were
injected synchronously at t ¼ 30ms; their number varied in
the simulations from 0 to 150. The spike time jitter
obtained is represented in Fig. 3 as a function of the
number of received EPSCs, and compared to the one
obtained with IPSCs under the same experimental condi-
tions. This result shows that a high level of spike timing
precision is not realized by excitation alone, even in
presence of a large number of EPSCs. In contrast,
GABAergic inhibition tends to eliminate the influence of
initial conditions and, thus, leads to a high level of spike
timing precision. This is in line with previous works [2,10].
In the olfactory bulb, the received inhibition from GCs
could, therefore, be responsible for the precision of
individual MCs. However, inhibitory feedback into the
MCs is asynchronous and variable across trials [19,22].
How does the variability of the received inhibition affect
the precision of principal neurons? This point will be
studied mathematically in the next section.
3. Mathematical analysis of spike timing precision for a

neuron receiving variable inhibition

Let us first consider a QIF neuron (Eq. (1) with
InoiseðtÞ ¼ 0) receiving, at a time tf , a single IPSC whose
temporal evolution is given by Eq. (2). The total current,
for tXtf , is then
JðtÞ ¼ I � I th � ge�ðt�tf Þ=tðV ðtÞ � EGABAÞ. (3)

Börgers and Kopell [2] have shown that the firing time T1

of a QIF neuron receiving a single strong IPSC is relatively
independent of the initial condition V ðt ¼ 0Þ, see also [10].
Provided g is large enough, trajectories in the phase plane
ðV ; JÞ are all attracted towards a given trajectory so that
they all reach approximately the same point ðV th; J

%Þ at
firing time. This is shown in Fig. 3 in [10] and Fig. 5C in [2].
The result is an almost complete loss of the initial condition
V ðt ¼ 0Þ. Whatever, the initial condition might be, the total
input current is approximately equal to J% at the firing time
T1

J% � JðT1Þ ¼ I � I th � ge�ðT1�tf Þ=tðV th � EGABAÞ

and thus

T1 � t ln g� t lnðI � I th � J%Þ þ t lnðV th � EGABAÞ þ tf .

To determine the effect of variable inhibition on the spike
time jitter, we have generalized Börgers and Kopell’s study
to the case of a QIF neuron receiving a burst of k IPSCs at
times t

f
i , i ¼ 1; 2; . . . ; k. Without loss of generality, we

consider that the neuron fires after receiving the kth IPSC.
At the firing time T, the total input current is approxi-
mately equal to J%

J% � JðTÞ ¼ I � I th �
Xk

i¼1

ge�ðT�t
f
i
Þ=tðV th � EGABAÞ (4)

and thus, the firing time of a neuron receiving a burst of k

IPSCs is

T � t ln g� t lnðI � I th � J%Þ

þ t lnðV th � EGABAÞ þ t ln
Xk

i¼1

et
f
i
=t. ð5Þ

Let us now consider variable inhibition, i.e. the number k

of received IPSCs is a random variable with mean hki and
variance s2k, and the IPSC times t

f
i are drawn randomly

from an unknown probability density function with
variance s2t . The only random variable in Eq. (5) is thus

X ¼ t ln
Xk

i¼1

et
f
i
=t.

Furthermore, we have s2T ¼ s2X . An approximation for s2T
can be found by considering the fact that the variance of a
sum of a random number k of independent random
variables, each with variance s2, is hkis2 þ hki2s2k, and
that the variance of a function y ¼ gðxÞ of a random
variable x approximately depends on the mean Zx and
variance s2x of x: s2y � jdg=dxj2x¼Zs

2
x (Eq. (5.56) in [17]).

Using these formulae, we found

s2T �
1

hki
s2t þ t2

s2k
hki

� �
. (6)

Note that Eq. (6) becomes identical to Eq. (4.20) in [2]
when the inhibition is precise ðs2t ¼ 0Þ. However, Eq. (6) is
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more general than the one in [2] because it takes into
account the fact that the IPSCs can occur at different
times.
4. Numerical results

In order to check the validity of the approximation given
by Eq. (6), we performed repeated simulations of the QIF
neuron (Eq. (1), InoiseðtÞ ¼ 0) receiving a random burst of k

asynchronous synaptic events (Eq. (2)). The number k of
unitary IPSCs is drawn randomly from a gaussian density
with mean hki ¼ 100 and standard deviation sk varying
from 0 to 9. Unitary IPSCs are generated at random times
(inhibitory jitter st taken from 0 to 9ms). In order to
consider the effect of fast GABAA and slow GABAB
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Fig. 4. Spike time jitter sT as a function of the variability of the received

inhibition (st;sk). The dashed curve represents theoretical sT values given

by Eq. (6). The plain curve represents experimental sT values obtained

from simulations of the QIF neuron. In Eq. (1), InoiseðtÞ ¼ 0, I ¼ 0:13 nA
and IGABA was obtained from a burst of k stochastic asynchronous

synaptic events (Eq. (2)) with synaptic current decay of 6ms (A) and

100ms (B). The number k of unitary IPSCs is drawn randomly from a

gaussian density with mean hki ¼ 100 and standard deviation sk varying

from 0 to 9. Unitary IPSCs are generated at random times (inhibitory jitter

st taken from 0 to 9ms).
inhibition, tfast ¼ 6ms or tslow ¼ 100ms have been used as
synaptic decay time constant in Eq. (2).
Fig. 4 compares the theoretical spike time jitter sT given

by Eq. (6) to the one obtained from simulations. In Fig 4A,
when fast inhibition is precise (small st) and balanced
(k � hki, small sk), we see a perfect match between
theoretical and experimental sT values. For st larger than
4ms, sT values given by Eq. (6) are, however, under-
estimated. Moreover, the discrepancy between theoretical
and experimental sT values increases with the inhibitory
jitter st. This is due to the approximations made for
deriving Eq. (6). In particular, the approximation of the
variance of a function (Eq. (5.56) in [17]) is only valid when
the variance is small. From Eq. (6), we see that the
inhibitory jitter contributes negatively to the spike timing
precision through the ratio s2t =hki. Because the mean
number of IPSCs was large in our simulations, we obtained
sT5st in case of fast inhibition (see Fig. 4A). From Fig.
4B, we see that slow inhibition is not robust to a variability
on the number k of received IPSCs. The spike time jitter sT

increases much faster in the sk direction in Fig 4B when
tslow ¼ 100ms than in Fig 4A when tfast ¼ 6ms. When
st ¼ 0, Eq. (6) predicts that sT will be tslow=tfast � 17 times
higher for slow inhibition than for fast inhibition.
So far, we just considered a single burst of inhibition

with hki fairly large. What happens to the spike time jitter
when hki is smaller and the inhibition phasic? To address
this question, we performed simulations of a QIF neuron
receiving consecutive bursts of stochastic asynchronous
synaptic events. Fig. 5 shows the temporal evolution of sT
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Fig. 5. With phasic fast GABAergic inhibition, the temporal evolution of

the spike time jitter sT reaches a stable state. The QIF neuron (Eq. (1),

InoiseðtÞ ¼ 0) receives consecutive bursts of stochastic asynchronous

synaptic events (hki ¼ 10 IPSCs, st ¼ 2ms; sk varying from 0 to 3 IPSCs,

period of inhibitory bursts ¼ 150ms). Two extreme initial conditions are

considered, one for which V ðt ¼ 0Þ was similar in all trials and another for

which V ðt ¼ 0Þ was randomly chosen. They, respectively, lead to sT ¼

0ms and sT � 30ms at time t ¼ 100ms. Despite different initial

conditions, sT converges to a stable state which depends on the value of

sk. Two spike rasters, obtained from repeated trials with I ¼ 0:125nA, are

indicated for the two initial conditions.
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after consecutive bursts of inhibition with t ¼ 6ms. We
see that sT reaches a stable state that does not
depend on initial conditions but does depend on the value
of sk.
5. Discussion

We have considered the spike timing precision of a
neuron receiving GABAergic inhibition whose number and
timing of inhibitory synaptic events is variable across
repeated trials. How does this variability affect the spike
timing precision in principal neurons? We have derived an
approximate analytical expression for the spike output
jitter (Eq. (6)). The variability of the received inhibition is
characterized by the inhibitory jitter s2t and the variance s2k
in the number k of inhibitory events. The inhibition is said
to be balanced when s2k is small so that k across trials is
approximately equal to the mean inhibition hki. The
inhibition is said to be precise when s2t is small so that
the inhibitory events occur approximately at the same time.

From Eq. (6), we see that the contribution of s2t and s2k
to the spike output jitter s2T is divided by the mean
inhibition hki (large hki implies small s2T ). In neural
structures with a large number of inhibitory cells, hki is
expected to be large, and thus there is less requirement to
have precise and balanced inhibition. In contrast, precise
spike timing in neural structures where hki is small requires
precise and balanced inhibition. This prediction is in line
with previous modeling work [15] and experimental data
from the insect antennal lobe. The antennal lobe has a
small number of inhibitory cells (e.g. 300 for the locust)
and the inhibition has been shown to be very precise
(st � 3:8ms, see [11]).

From Eq. (6), we see that the contribution of s2k to the
spike output jitter s2T is multiplied by the decay time
constant of the inhibitory synapse. As shown in Fig. 4,
slow inhibition is not robust to a variability on the number
k of received IPSCs, in contrast to fast inhibition. This
result is in agreement with experimental data from the
insect antennal lobe showing that synchronization and
precise spike timing of principal cells decreases (resp.
increases) when fast GABAA (resp. slow GABAB) inhibition
is pharmacologically blocked, see [21,24].

The role of phasic fast GABAA and slow GABAB

inhibition is interesting to pursue as extension to this
work. As seen in Fig. 5, the firing times of a neuron
receiving consecutive bursts of fast inhibition become more
and more precise over time. On the contrary, the spike time
jitter of a residual neuron that does not receive inhibition
or receive slow inhibition increases over time so that only
its firing rate can reliably encode information (see Fig. 1).
This suggests that complementary pieces of information
may be conveyed in the precise timing of neurons
receiving fast inhibition and in the firing rate of residual
neurons receiving slow inhibition. Phasic fast and slow
inhibition could, therefore, multiplex information into
separate channels, in agreement with recent experimental
work [7].
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