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In the 1980's I was a graduate student in the relatively new field of cognitive science, working in the 

lab of Douglas Hofstadter at the University of Michigan. The central theme of our research was 
emergence. The key question for us was how high-level, meaningful patterns emerged from a substrate 
made up of neurons devoid of all meaning. Aside from my work on emergent computational models of 
analogy making, which was the subject of my thesis, two classes of emergent models were of particular 
interest to me: genetic algorithms and connectionist models. As a first-year graduate student I took a 
course on connectionist modeling in which the professor, Stephen Kaplan, had us read basically every 
article ever written that had anything to do with networks of computational neurons -- something that was 
still possible before the Connectionist Revolution began in 1986. This revolution -- perhaps more a 
renaissance than a revolution -- was launched largely by the publication of Rumelhart and McClelland's 
(1986) seminal work, Parallel Distributed Processing (PDP). Sometime in 1985 a ring-binder preprint of 
PDP showed up in our lab. It contained, among many other things, the now-famous "feedforward-
backpropagation" (FFBP) algorithm that overcame the problems with Frank Rosenblatt's "perceptrons" 
(very simple neural networks) that Minsky and Papert (1969) had brought to light in their book, 
Perceptrons. Minsky and Papert's book brought the entire embryonic field of neural network research to a 
screeching halt and it did not revive for another decade and a half. In any event, I coded up the FFBP 
algorithm in LISP and, even though it ran as slow as molasses, it did, indeed, work. I was incredibly 
excited by the whole thing, and have been a connectionist modeler ever since!  

It has been fun to be able to play a part, however small, in the connectionist movement of the 1980's 
and early 1990's. The researchers who later became pillars of connectionism were, for the most part, not 
long into their careers and were all eminently approachable. Debates raged with the "opposing camp" of 
researchers from traditional artificial intelligence. There was an explosion of new connectionist 
algorithms to do everything from learning to read aloud to building a Turing Machine out of connectionist 
parts, from de-blurring images to predicting sunspots and exchange rates, and on and on.  

But all was not perfectly rosy with the main actor in the Connectionist Revolution -- namely, 
feedforward-backpropagation networks. Backpropagation did not exist in real brains, said some. 
Backpropagation networks were too powerful, said others. They couldn't do one-shot learning. They were 
generally terribly slow and could only be trained by seeing the same items thousands, sometimes 
hundreds of thousands, of times. They had no attentional mechanisms. Sometimes they never converged 
at all. And so on. One of the most serious problems with these networks was that, once they had learned 
some set of patterns, learning a second set very often completely erased all learning of the first set (for a 
review see French, 1999). In attempting to find a solution to this problem, I met Steve Lewandowsky, co-
author of the present book on computational modeling, who was attempting to do the same thing. And 
that, as Bogart says in the movie, was the beginning of a beautiful friendship.  

Perhaps the question most often asked of computational modelers by empirical researchers is, "What's 
the point?" My reply is always this: Good computational models inform empirical research, and good 
empirical research informs computational modeling. And one of the most striking examples of this 
interaction comes from connectionism, long before it was called "connectionism". 

In 1956 only a vanishingly small number of vacuum tube-filled electronic "calculators" existed (they 
weren't even called "computers" yet!) and one of them had been built by IBM. Four IBM researchers, 
among them, John Holland, co-director of my thesis, decided that the newly minted IBM 704 Electronic 
Calculator could be used to model the emergence of Hebbian cell assemblies from "an unorganized net of 
neurons" (Rochester, Holland, Haibt, & Duda, 1956). The neural network they programmed into the 
machine consisted of a mere 69 neurons. But, most importantly, it didn't work. Or at least it didn't work 



the way Donald Hebb said it should have, if his synaptic strengthening law1

This is a textbook example of how modeling, theory and experimentation go hand-in-hand. In this 
case, empirical work by Hebb with Wilder Penfield and Karl Lashley led to his theory of how cell 
assemblies formed in the brain. His theory, however, did not include inhibitory connections between 
neurons, because at the time their existence had not been established experimentally. Rochester et al. 
(1956) then tried to build a computational model based on Hebb's theory and they found that, in order to 
produce the neuronal clustering that Hebb had predicted, inhibitory connections between neurons, in 
addition to excitatory connections, were necessary. This caused Hebb to modify his theory of how cell 
assemblies formed by including inhibitory connections (Hebb, 1959). It also stimulated neuroscientists to 
look for, and ultimately, find, inhibitory connections between real neurons in the brain. Examples of this 
kind of interaction between models and experimental research abound, although they are perhaps not as 
clear cut as this one.  

, put forward in his seminal 
work, The Organization of Behavior (Hebb, 1949), was right. So, John told me they went to Montreal to 
discuss the situation with Hebb himself. The problem was that the neurons in their model, instead of 
gradually organizing themselves into "cell assemblies," each representing similar sets of inputs, would all 
became active regardless of what the input to the network was. They decided that, in addition to 
excitatory connections between neurons, the model -- and Hebb's theory -- also required inhibitory 
connections between some of the neurons. Upon returning to the IBM research center where they worked, 
they added inhibitory connections to their model and -- mirabile dictu! -- their modified model worked 
exactly as it should have. Cell assemblies formed and divided precisely as predicted by Hebb.  

After a slump in interest in connectionist models in the 2000's in favor of Bayesian learning 
techniques, an interest in connectionist models was reignited by the discovery of efficient algorithms to 
do "deep learning" (Hinton, Osindero, & Teh, 2006). The idea was to build a stack simple connectionist 
networks, each one feeding its output into the input of the next one. As information went from the input 
layer through each successive layer to the output, the features and structure that characterized the input 
were gradually discovered by the layers. Deep-learning connectionist networks have produced 
extraordinarily good classification/recognition of hand-written digits, faces, speech, animals, and so on. 
Many current speech-recognition applications, for example, rely on these networks. Once again, these 
networks are bio-inspired from real brains where information is processed by many layers before it 
reaches output effectors.  

In short, I would argue that the recent advent of deep-learning neural networks is every bit as exciting 
as the mid-1980's when connectionist models returned to the scene after a decade and a half in the 
wilderness. And the sometimes acrimonious debates of the 1980's between connectionists and symbolic 
AI researchers are, fortunately, a thing of the past. Most importantly, computing power has gone from a 
mere 12,000 operations/second of the IBM 704 to the Chinese Sunway TaihuLight that in 2016 was 
clocked at 93 petaflops, i.e., 93,000,000,000,000,000 operations/second. Digital Research just built the 
world's largest neural network with 160 billion weights. And this is just the beginning....  
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