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Abstract 6 

In recent years eye-tracking has begun to be used to study the dynamics of analogy making. There are numerous 7 

scanpath-comparison algorithms and machine-learning techniques that can be applied to the raw eye-tracking 8 

data. We show how scanpath-comparison algorithms, combined with multidimensional scaling and a 9 

classification algorithm, can be used to resolve an outstanding question in analogy making -- namely, whether or 10 

not children's and adults' strategies in solving analogy problems are different. (They are.)  We show which of 11 

these scanpath-comparison algorithms is best suited to the kinds of analogy problems that have formed the basis 12 

of much analogy-making research over the years. Further, we use machine-learning classification algorithms to 13 

examine the item-to-item saccade vectors making up these scanpaths.   We show which of these algorithms best 14 

predicts from very early on in a trial, based on the frequency of various item-to-item saccades, whether a child or 15 

an adult is doing the problem.  This type of analysis can also be used to predict, based on the item-to-item saccade 16 

dynamics in the first third of a trial, whether a problem will be solved correctly or not. 17 
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Introduction 1 

Traditionally, analogy-making has been studied statically.  Participants typically saw a pair of related images 2 

(the "base pair"), along with a third image and a number of candidate target images.  One of these target images -- 3 

the "correct analogical match" -- was supposed to be related to the third image in the same way the base items 4 

were related to one another. The participant's task was to identify the correct analogical match. Correct/incorrect 5 

answers (and, sometimes, reaction times) were recorded and analyzed. However, these studies could not capture -- 6 

and in fairness, were not designed to capture -- the dynamic aspects of solving an analogy problem.  As such, they 7 

shed essentially no light on the question of what strategies were adopted during the course of solving analogy 8 

problems.  9 

In this paper we will introduce a novel means of studying the dynamic aspects of analogy making in both 10 

children and adults.  The proposed methodology involves combining eye-tracking, multiple dimensional scaling 11 

(MDS) and neural network classification algorithms, as well as using machine-learning algorithms to analyze the 12 

component vectors making up participants' scanpaths.  In what follows we will briefly describe each of these 13 

techniques and show how they can be combined successfully in the context of analogy making. 14 

Although the purpose of this paper is, first and foremost, a methodological one, it is important to note that 15 

the development of these techniques has allowed us (Thibaut, French, Missaut, Gérard, & Glady, 2011; French & 16 

Thibaut, 2014; Thibaut & French, 2016) to answer, for what we believe to be the first time, a long-standing 17 

question in the field of analogy-making -- namely, do children and adults use the same (or very similar) search-18 

space strategies when solving analogy problems?  The answer, as will be shown in what follows, is no. 19 

 20 

Eye-tracking 21 

Eye-tracking involves following the gaze trajectories of participants as they perform a particular task. The 22 

underlying assumption is that sequences of eye-movements (i.e., scanpaths) are a reflection of the mental activity 23 

involved in studying a scene, examining a face, pondering a configuration of items, etc.  It is the first tool that has 24 

allowed the dynamics of solving analogy problems to be studied.  25 
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 1 

Analyzing eye-tracking data 2 

Obviously, recording participants' scanpaths as they do analogy problems is of little use unless this data is 3 

analyzed in an appropriate manner.  There are currently a number of different scanpath-comparison techniques, 4 

each with its advantages and disadvantages.  In the present article we will compare three of the most important of 5 

these techniques in the context of their application to the study of analogy making. In order to compare these 6 

techniques we analyze their output by means of multidimensional scaling and neural network classification 7 

algorithms. 8 

The test bed for these techniques will be how well these algorithms can be used to answer what has been for 9 

many years an open question in the field of analogy making -- namely, whether or not children's analogy problem 10 

solving strategies are different from those of adults.  One of these techniques, developed by Jarodska et al. (2010), 11 

allows us to answer this question (in the affirmative) significantly better than the other two.  12 

Subsequently, we analyze the item-to-item gaze transitions making up these scanpaths using two different 13 

machine-learning classification algorithms, Linear Discriminant Analysis (LDA, Fisher, 1936) and Support 14 

Vector Machines (SVM, Vapnik, 1995, 1998). These techniques not only allow us to better understand where the 15 

differences between adults’ and children’s search strategies lay and at what point in time these differences arise, 16 

but also, crucially, they allow us to predict significantly better than chance and very early in a trial whether a child 17 

or an adult is doing the problem, whether or not the problem will be solved correctly, etc.  18 

  19 

Background 20 

Analogical reasoning is a ubiquitous process in thinking and reasoning (Hofstadter, 2001; Holyoak, Gentner, 21 

& Kokinov, 2001; Gentner & Smith, 2012; Holyoak, 2012). It can be defined as a comparison of two domains 22 

(the source and the target domains) on the basis of their respective relational structure (Gentner, 1983). Studies of 23 

analogy making have explored two main explanations for its development  namely, the increase of structured 24 

knowledge (Gentner & Ratterman, 1991; Goswami, 1992) and the maturation of executive functions (Halford, 25 
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1993; Richland, Morrison, & Holyoak, 2006; Thibaut, French, & Vezneva, 2010a, 2010b). An important 1 

prediction of the executive-function view is that children and adults should organize their search of the analogy 2 

problem space differently (see also Woods et al., 2013). This is what we mean when we say that they use different 3 

strategies when solving analogy problems. What information is sought and how the search for this information is 4 

organized in time is crucial to understanding how the analogy problem is solved. Attention and gaze-fixation are 5 

highly correlated, especially for complex stimuli (Deubel & Schneider, 1996; He & Kowler, 1992) and the 6 

fixation time for a given object is correlated with its informativeness in a scene (Nodine, Carmody, & Kundel, 7 

1978). In other words, eye movements can provide a window on specific problem-solving strategies, in particular, 8 

for problems involving visual information. This makes eye-tracking particularly well adapted to the types of 9 

analogy problems that we will consider.  10 

We are not the first to use eye-tracking technology to study analogy making, but this type of analysis 11 

remains, nonetheless, in its infancy. Eye-tracking techniques were first used by Bethell-Fox, Lohman, & Snow 12 

(1984) to study strategies when reasoning by analogy. They found strategic differences in adults with high or low 13 

fluid intelligence when solving geometric A:B::C:? problems. More recently, Gordon & Moser (2007) 14 

investigated adults’ strategies in scene analogy problems. Thibaut, French, Missault, Gérard, & Glady (2011), 15 

Glady, Thibaut, & French (2013), French & Thibaut (2014) and Thibaut & French (2016) have recently used eye-16 

tracking technology to examine children's gaze locations and item-to-item transitions during analogy tasks, 17 

demonstrating clear differences in adults and children's strategies in solving analogy problems. 18 

 19 

Comparing three scanpath-comparison algorithms 20 

 21 

A scanpath is the complete visual trajectory of a participant’s eye movements during a task and various 22 

techniques have been developed to characterize and compare scanpaths. We will consider three of these 23 

techniques: the most widely used is an algorithm developed by Levenshtein (1966), another is the widely used 24 

attentional map algorithm (AMAP, Ouerhani, et al., 2004; Rajasahekar, et al., 2008), and the third is a relatively 25 
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recent vector-based algorithm developed by Jarodzka, Holmqvist, & Nyström (2010). Each of these algorithms 1 

compares two scanpaths and produces a number that indicates how similar they are to each other.  We will 2 

compare these three scanpath algorithms on how well they are able to distinguish children's from adults' scanpaths 3 

while solving analogy problems. All three of these scanpath algorithms showed that there were, in fact, significant 4 

differences in how children and adults solve analogy problems.  However, one of these algorithms, the Jarodzka et 5 

al. (2010) algorithm, is best suited to these analyses and outperforms the other two. 6 

 7 

Scanpath comparison 8 

To do this comparison we gave children and adults the same analogy problems and recorded their scanpaths 9 

while they were solving these problems. We then used each of the scanpath-comparison algorithms to produce a 10 

pairwise comparison of all scanpaths, both children’s and adults’, to produce a similarity matrix between all 11 

scanpaths for these problems. By means of multi-dimensional scaling (MDS, Torgerson, 1952; Cox & Cox, 2001) 12 

we converted this matrix into a 2D map that reflected these similarity measures. Each scanpath is represented by a 13 

point on this 2D MDS map (Figs. 4a, b, and c). We then performed a “leave-one-out cross-validation" procedure 14 

(LOOCV; see Lachenbruch, 1967; Geisser, 1975; Stone, 1974; Miller, 1974; for a review, see Arlot & Celisse, 15 

2010) on these points using a standard feedforward-backpropagation network (FFBP, Rumelhart & McClelland, 16 

1986). This worked as follows. For each point, p, in the MDS map, we trained the FFBP network to correctly 17 

classify (i.e., adult or child) all of the other points in the map except p (hence, the name of the procedure, “leave-18 

one-out”). We then presented the previously unseen point, p, to the network to see if it classified p correctly (i.e., 19 

whether it corresponded to an adult's or a child's scanpath). We did this for all points, p, in the 2D MDS map.  For 20 

all of the scanpath-comparison algorithms, once the dimensionality of data was reduced by MDS, the FFBP 21 

network was able to correctly classify the left-out p’s well above chance, which shows  that adults and children 22 

are using different strategies to solve analogy problems.  As we will show in more detail below, the Jarodzka et 23 

al., (2010) algorithm produced the best results.  24 

We begin with a brief description of each of the three algorithms we tested.   25 



Evaluating analogy-making eye-tracking algorithms  French, Glady, Thibaut 

6 

 

   1 

Levenshtein’s (1966) “string-edit” algorithm 2 

This algorithm divides the scan area into pre-defined areas of interest (AOIs) and then associates each of the 3 

fixation coordinates recorded by the eye-tracker with one of these areas. Scanpaths are considered to be a 4 

sequence of these AOIs. The duration of fixation in each area is not taken into account (i.e., consecutive fixations 5 

that fall into one AOI are collapsed). Suppose, for example, that the AOIs for a particular problem are labeled A, 6 

B, C, D, E, F, G, and H.  Suppose further that there is a scanpath S1 = BADEGAGCB, which meant that the 7 

participant’s gaze moved successively from areas B to A to D to E ...etc. A second, shorter scanpath might be S2 = 8 

ABDEGBG. The Levenshtein algorithm is a “string-edit” algorithm which determines the "distance" between two 9 

scanpaths as the smallest number of single-letter substitutions, deletions, and/or insertions required to transform 10 

one string into the other. This number is calculated using the Wagner-Fischer algorithm (Wagner & Fischer, 11 

1974) and is the Levenshtein distance between the two scanpaths.   12 

 13 

Attention map (AMAP) scanpath comparison  14 

There are a number of “attention map” algorithms. AMAP algorithms compare two scanpaths by computing 15 

how long various locations were looked at, how far each fixation point in one scanpath is from the closest fixation 16 

point in the other scanpath, etc.  One of the earliest algorithms based on attention measures is the Mannan 17 

distance algorithm (Mannan, Ruddock, & Wooding, 1997). However, there are a number of  drawbacks to this 18 

class of scanpath-comparison techniques ─ namely, the temporal order of fixations is lost. So, even if the two 19 

scanpaths have very different lengths and shapes, an AMAP  algorithm can still indicate a high degree of 20 

similarity between them (Le Meur & Baccino, 2012). When attempting to uncover exploration strategies that 21 

unfold over time, the loss of temporal information poses a serious problem. More recent attention map 22 

comparison algorithms (e.g., Ouerhani, et al., 2004; Rajasahekar, et al., 2008) create attention “landscapes” by 23 

accumulating fixed-width Gaussians over fixation points. It is generally accepted that the longer a fixation time on 24 
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a particular item, the deeper the visual processing of that item (Just & Carpenter, 1976). In this attentional-1 

landscape algorithm, as in the earliest attention-map algorithms, temporal-order information is still lost.  2 

After obtaining attention maps for each trial, comparison scores between the different scanpaths are obtained 3 

using a coefficient of correlations between the values of the two attention maps. As with the Levenshtein 4 

algorithm, we used the AMAP pairwise scanpath-comparison scores to create a similarity matrix comparing 5 

children’s and adults’ scanpaths for the three sets of problems described above.  6 

 7 

Vector-based scanpath-comparison (Jarodzka et al., 2010). 8 

A novel method of scanpath comparison was recently proposed by Jarodzka et al. (2010). This algorithm 9 

turns out to be a particularly powerful one for analyzing scanpaths from analogy-making problems. Below we 10 

present our simplification of this algorithm. 11 

 12 

                                         Original scanpath                                                 Simplified scanpath 13 

Figure 1. Simplifying scanpaths in the Jarodska et a. (2010) algorithm 14 

 15 

A scanpath is considered to be made up of a series of “saccade vectors,” i.e., a concatenated series of vectors 16 

whose endpoints correspond to coordinates of successive gaze points (Fig. 1, left panel). The scanpath is first 17 

simplified by combining into a single vector any two consecutive saccade vectors that are nearly collinear and by 18 

combining very short vectors with longer adjacent ones (Fig. 1, right panel). In general, very small saccade 19 

vectors occur when a participant has fixed his/her gaze on a particular item.  20 
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After simplification, two scanpath vectors can be compared by “stretching” one or both of them 1 

appropriately. Scanpath stretching, which is at the heart of this algorithm, requires some explaining. Assume there 2 

are two saccade vectors, U = {u1, u2, u3} and V = {v1, v2, v3, v4}. In other words, scanpath U consists of the 3 

saccade vector u1 is followed by u2, which is followed by u3. Similarly, the scanpath V consists of saccade vectors 4 

v1 followed by v2, followed by v3, followed by v4. In order to compare U and V, we need to transform them into 5 

two scanpaths of the same length. To achieve this, we will "stretch" the scanpaths, as necessary, in order to be 6 

able to align them for comparison. This is done by adding immediate repetitions of saccade vectors (we call this 7 

“stretching” the original scanpath), so that the two stretched scanpaths have the same length. Our goal is to find 8 

the two stretched scanpaths, U´ and V´, that are as similar as possible to each other with respect to the chosen 9 

similarity metric (orientation, length, etc.). The degree of similarity between U' and V' will be the measure of the 10 

similarity between U and V.  11 

The idea is to make a matrix with the saccade vectors of one scanpath on the x-axis and the saccade vectors 12 

of the second scanpath on the y-axis (See Figure 2.)  The uppermost cell on the left is the starting cell and the 13 

lowermost cell on the right is the ending cell.  We then traverse this matrix from the starting cell to the ending 14 

cell, on each step always moving closer to the ending cell.  ("Backward"  moves are not permitted.) Each cell that 15 

is traversed contains a value that measures how close the two saccade vectors associated with that cell are. (The 16 

lower the value, the more similar the two saccade vectors).  Our goal is find the path with the lowest possible total 17 

similarity value.   18 

So, if we suppose that the path through the matrix that goes through {(u1, v1), (u1, v2), (u1, v3), (u2, v3), (u2, 19 

v4), (u3, v4)} (shown in dashed red in the Fig. 2b) is the one with the smallest total similarity value, we observe 20 

that U has been “stretched” to become U´ by repeating u1 and u2 to become U´ = {u1, u1, u1, u2, u2, u3} and V has 21 

been stretched by repeating v3  and v4 to become V´ = {v1, v2, v3, v3, v4, v4}. 22 

 U´ and V´ now have the same length and can, therefore, be compared by a pairwise comparison of their 23 

respective component saccade vectors. This comparison may be made on the basis of the respective lengths of the 24 

paired component saccade vectors, their orientation, etc.  25 
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      1 

Figure 2a:  The saccade-vector difference matrix. Each of the saccade vectors making up each of the two 2 

scanpaths are compared based on the chosen metric and a saccade-vector difference table is drawn up 3 

based on these differences.  4 

Figure 2b:  The cumulative-difference matrix. The comparison of each pair of stretched scanpaths corresponds to 5 

a traverse of the table from the upper-left to the lower-right corner of the saccade-vector difference 6 

matrix (the only directions of movement permitted are down, right and diagonally down-and-right). 7 

We find the path that produces the lowest total difference value and this value is the measure of 8 

similarity between U and V. 9 

 10 

We now describe this algorithm in detail. A saccade-vector difference matrix is first created (Fig. 2a). Each 11 

of the saccade-vectors making up one of the scanpaths is compared to each of the saccade-vectors making up the 12 

other scanpath, according to a metric, generally, vector magnitude or orientation (magnitude, in our study). Once 13 

this table is constructed, we consider all paths through the table that begin with the comparison of the first saccade 14 

vectors in both scanpaths (i.e., cell (1, 1) of the table containing (u1, v1)) and end with a comparison of the final 15 

saccade vectors in each scanpath (i.e., cell (3, 4) of the table containing (u3, v4)). The traverse of the difference 16 

matrix always moves to the right, down, or diagonally down-and-right. Three examples of paths through the 17 

matrix are illustrated in the Fig. 2b. Each path through the table corresponds to the comparison of two specific 18 

(stretched) scanpaths. For example, the uppermost path shown corresponds to a comparison between U´ = {u1, u1, 19 

u1, u2, u2, u3} and V´ = {v1, v2, v3, v3, v4, v4}. This path corresponds to the sum of the values in the cells (1,1), 20 

(1,2), (1,3), (2,3), (2,4), (3,4) of the saccade-vector difference matrix. When all of these paths through the matrix 21 
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are considered, the path which has the smallest value (i.e. the smallest cumulative sum of comparisons) is 1 

selected. This path corresponds to the two stretched scanpaths that are the most similar.  2 

We simplified the Jarodzka et al. (2010) algorithm by eliminating the relatively complex Dijkstra (1959) 3 

tree-search algorithm that it uses. Instead, we simply construct a path through the difference matrix by moving 4 

only rightward, downward or diagonally from the upper-left cell towards the lower-right cell. As we progress 5 

incrementally through the saccade-vector difference matrix, we record in the cells of the cumulative-difference 6 

matrix in Fig. 2b the smallest sum of the difference values of all the paths that led to that cell. This is similar to 7 

the matrix-traversal technique used in the Wagner-Fischer algorithm (Wagner & Fischer, 1974) in the 8 

Levenshtein string-edit algorithm. There will necessarily be more than one path that lead to most cells (except 9 

cells on the top and left edges of the matrix). Thus, in each cell, we put the value of the “least costly” path to that 10 

cell, which is the path corresponding to the greatest overall similarity of the scanpaths to that point. This means 11 

that at each step of the process, each cell of the cumulative-difference matrix always contains the value of the 12 

“least costly” path from C(1,1) to that cell. The similarity measure between any two scanpaths, U and V, is the 13 

cumulative sum of differences in the lower-right cell of the cumulative-difference matrix, normalized by the 14 

number of steps taken through the matrix.  15 

As we did for the Levenshtein and the AMAP algorithms, we used the Jarodzka et al. algorithm to create a 16 

similarity matrix between the adults’ and children’s scanpaths for the four trials in each of the three conditions 17 

(see Materials in the description of the experiment and Figure 3). The metric we used for similarity of the saccade 18 

vectors (i.e., in order to calculate the saccade-vector difference matrix for each pair of scanpaths) was their length. 19 

Using a standard Multidimensional Scaling (MDS; Torgerson, 1952) procedure, we transformed the similarity 20 

matrices into 2D scatter plots (Fig. 4).  21 

 22 

Testing the scanpath algorithms and analyzing their component item-to-item transitions 23 

 24 

To test the performance of the three scanpath-comparison algorithms described above in the domain of analogy 25 

making and to examine further information that can be gleaned from item-to-item transitions within these 26 
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scanpaths, we ran an analogy-making experiment comprised of three different types of analogy making task.   1 

 2 

Experiment with three analogy-making tasks 3 

Overview 4 

The goal of this experiment is to consider the output of each of the three scanpath-comparison algorithms for a set 5 

of three different types of analogy problems done by children and adults.  This data is then converted by 6 

multidimensional scaling into a 2D plot and then analyzed by means of a neural net classifier to determine how 7 

well each of these scanpath algorithms discriminate children's scanpaths from those of adults.  8 

Methods 9 

Participants 10 

Subjects were 20 adults (14 females, 6 males; mean age=20;5 years; SD=2.21; range: 17 to 27), students at 11 

the University of Burgundy-Franche-Comté and naïve to analogical reasoning tasks and 25 6-year-olds (16 12 

females, 9 males; mean age= 79.5 months; SD=3.6; range: 73 to 84). For children participating in this experiment, 13 

parents’ informed consent was obtained. 14 

Materials 15 

Three tasks, each composed of three training trials and four experimental trials, constituted the experiment. 16 

The first task was a "Scene" analogy problem task (Richland, 2006), the second a standard A:B::C:? task (called 17 

"ABCD") and the third an A:B::C:? task with the items composing the problems put into a context (e.g., bird 18 

flying to its nest, etc., hereafter called "ABCD-Scene"). Each problem of each task was composed of 7 images, 19 

each being a black-and-white line drawing (Figure 3). 20 

In the Scene analogy problems, the top scene was composed of two elements depicting a binary semantic 21 

relation: here, a mouse (A) being chased by a cat (B). One of these two elements (B) had an arrow pointing to it. 22 

The bottom scene was composed of five drawings: the two elements depicting the same relation as in the top 23 

picture:  a girl (C) being chased by a boy (T).  There is a distractor item, in this case a bird (D), and two elements 24 
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that were consistent with the scene but that had no salient relation with the elements of the relation. These pictures 1 

(501x376 pixels) were based on Richland et al., (2006). We have labeled the items in the Scene analogy problem 2 

to correspond to the A:B::C:D paradigm. 3 

 4 

 5 

Figure 3. Presentation of the three tasks used for this experiment: a) scene analogy task ("Scene"), b) standard 6 

A:B::C:? task ("ABCD"), and c) scene-oriented A:B::C:? task ("ABCD-Scene") 7 

 8 

In the standard A:B::C:? task ("ABCD"), the A, B, C drawings were presented in the top row along with an 9 

empty square symbolizing the location of the solution. The four remaining pictures, the Target (T), a Related-to-C 10 

Distractor (D), and two unrelated distractors, were presented in a row at the bottom of the screen. The size of each 11 

picture was 200x195 pixels.  12 

The Contextualized A:B::C:? task ("ABCD-Scene") consisted of two scenes (501x376 pixels). The top 13 

picture was composed of two black-and-white line drawings with a relation between them.  In Figure 3,  this is a 14 

bird (A) flying to its nest (B). The bottom picture was composed of five drawings: a dog (C), a doghouse (T), a 15 

bone (the semantic distractor, D) and two unrelated distractors. This task differed from the first task in that it was 16 

the C term that was designated with an arrow, and not one of the elements constituting the base relation. It 17 

differed from the second task because of the different pictures constituting the problem are grouped into two 18 
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scenes, but it is otherwise equivalent to the standard A:B::C:? task. The materials of the last two tasks were based 1 

on material previously used by Thibaut et al. (2011).  2 

The tasks were displayed on a Tobii T120 eye-tracker device with a 1024x768 screen resolution. A standard 3 

5-point calibration for the eye-tracker was used. There was an image of a duck in the middle of the screen prior 4 

each trial instead of the standard fixation cross. 5 

Procedure 6 

Appropriate controls were carried out to ensure that the participants knew what the items in each of the 7 

problems were and that they understood the instructions. In the first task, they were asked to point to the element 8 

in the bottom scene that played the same role as the one which had an arrow pointing to it in the top scene. The 9 

two others tasks were administered as in Thibaut et al. (2011). Eye-tracking data was gathered from moment of 10 

the initial presentation of the problem to the moment a choice of one of the answers was made. The participant’s 11 

scanpath for a particular problem consisted of a record of his/her gaze-fixation points taken every 8 ms. 12 

 13 

Analysis of the Data 14 

Using three different scanpath-comparison algorithms described above, we compared the scanpaths of adults and 15 

children on strictly identical problems. It was, of course, necessary that for each problem seen by adults and 16 

children, so that the location of the items was identical. Using each of the three scanpath-comparison 17 

algorithms, we created three similarity matrices for the full set of scanpaths, one for each algorithm. 18 

These matrices, which were subsequently analyzed by a multidimensional scaling (MDS) algorithm, 19 

were produced by a performing a pairwise comparison of all of the children's and all of the adults' 20 

scanpaths. In other words, the matrices consisted of all child-child, child-adult and adult-adult scanpath 21 

comparisons. 22 
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MDS scatter plots of children’s and adults’ scanpaths 1 

Below we show the MDS scatter plots (Fig. 4) derived from the similarity matrices computed by each of the 2 

three scanpath-comparison algorithms for the trials in each of the three experimental conditions. (See Materials 3 

section of the Experiment above and examples shown in Figure 3.)  4 

Each of the points (o’s and x’s) in these scatter plots represents a scanpath, either for an adult (o) or a child 5 

(x), recorded as the participant solved one of the three types of analogy problems. The extent to which the points 6 

for children are in distinct groups different from those for adults is a measure of how distinct the analogy-solving 7 

strategies are for the two groups. We can see that both groups of points for the scatter plots produced by the 8 

Levenshtein algorithm are quite tightly clustered, those produced by the AMAP algorithm are far more dispersed 9 

and are hard to distinguish, and those produced by the Jarodzka algorithm are the easiest to distinguish. In the 10 

next section we quantify these differences. 11 

 12 

 Scene                                                           ABCD                                             ABCD-Scene 13 

Figure 4a. MDS scatter plots derived from the scanpath similarity matrices produced by Levenshtein’s (1966) 14 

algorithm.  15 
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   1 

 Scene                                                           ABCD                                             ABCD-Scene 2 

Figure 4b. MDS scatter plots derived from the scanpath similarity matrices produced by an Attention Mapping 3 

algorithm (Ouerhani, et al., 2004). (x’s are children, o’s are adults.) 4 

 5 

    6 

 Scene                                                           ABCD                                             ABCD-Scene 7 

Figure 4c. MDS scatter plots derived from the scanpath similarity matrices produced by Jarodzka et al.’s (2010) 8 

algorithm. (x’s are children, o’s are adults.) 9 

 10 

Neural Network classification of the MDS scanpath scatter plot points. 11 

For each of the conditions and each of the scanpath classification algorithms, we wished to quantify the 12 

extent to which the scanpaths from adults were distinct from those of children. To do this, we used a standard 13 

“leave-one-out cross-validation" (LOOCV) procedure on the points in the MDS map using a standard 14 
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feedforward-backpropagation network (FFBP, Rumelhart & McClelland, 1986). Specifically, we used a three-1 

layer perceptron with 2 input units (one for each coordinate of the points in the MDS map), 5 hidden units, and 1 2 

category node (i.e., Child or Adult). There was a bias node on the input and hidden layers. During training, the 3 

network was run either until all its training exemplars were learned to a 0.2 criterion or for a maximum of 2500 4 

training epochs. We used a shallow sigmoid with a temperature parameter () of 0.1. For each MDS map, the 5 

input to the network consisted of the real coordinates of each point in the map and the "teacher" for that point was 6 

the group (Adult /Child) to which it belonged.  7 

 8 

Figure 5. A FFBP network trained on the points in the MDS maps derived from the scanpath-difference matrices 9 

for each of the three scanpath-comparison algorithms (Levenshtein, AMAP and Jarodzka et al.) and the three 10 

experimental conditions (Scene, ABCD, and ABCD-Scene). The AMAP algorithm is the poorest performer and 11 

the Jarodska et al. algorithm is clearly the best.  12 

 13 
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We ran an LOOCV procedure for all points in each MDS map. We then computed the total number of points 1 

that had been correctly classified. The higher this value, the more distinct the scanpaths of adults and children. 2 

The results of this analysis are shown in Figure 5. All results are significantly above chance (i.e., 0.5). Of the 3 

three scanpath-comparison algorithms, the performance of the Jarodzka et al. algorithm (with "vector magnitude" 4 

as the comparison metric) is the best and the AMAP algorithm the poorest.  In the case of the Jarodzka et al. 5 

algorithm, we obtained an Adult/Child prediction accuracy of 80% for the Scene analogy problems.  6 

 7 

Studying item-to-item saccades (transitions) making up the scanpaths 8 

Once we had looked at the analyses of the global scanpaths, we then considered the item-to-item saccades 9 

(transitions) that made up the scanpaths.  We did this based on the idea that if a participant had frequent 10 

successive saccades between two items, then he/she was considering that there was some relation between those 11 

two items, a relation that was, or might be, important in solving the analogy problem. The importance of the role 12 

of the relations between individual items is almost universally accepted in the analogy-making community.  We 13 

believe that item-to-item saccades reveal the collecting of this relational information, a point of view also 14 

endorsed by Salvucci & Anderson (2001), Thibaut et al. (2011), Hayes, Petrov, & Sederberg, 2011, and others. 15 

Thus, for both adults and children we considered their respective item-to-item saccade profiles (i.e., AB, AC, 16 

CT, etc.).  We determined how well various sets of these profiles allowed children to be distinguished from 17 

adults.  We then compared LDA and SVM with three different kernels to determine how well each of these 18 

algorithms, when applied to various sets of item-to-item transitions, predicted whether the individual doing a 19 

problem was an adult or a child. We were particularly interested in making this prediction as early as possible, 20 

which is why we paid particular attention to item-to-item saccade profiles in the first third of the trial.   21 

 22 

 23 
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Predictions based on item-to-item saccades 1 

 2 

We looked at all of the item-to-item saccades (transitions) that were potentially relevant to solving the three types 3 

of A:B::C:D analogy problems given to participants.  This set of transitions was: AB, AC, BC, BT, CT, CD, and 4 

TD.  Over the course of the trial, we counted the number of these item-to-item saccades making up each scanpath. 5 

This gave us a "transition profile" for each participant and for each trial.  So, for example, suppose for a given 6 

trial a child had 8 AB transitions, 2 AC transitions, 1 AC  transition, 0 BT transitions, 12 CT transitions, 8 CD 7 

transitions, and 4 TD transitions, their {AB, AC, CT} transition profile for that trial would be {8, 2, 12}, their 8 

{AB, TD} transition profile would be {8, 4}, and so on.   9 

As described earlier, there were three trial types: "Scene", "ABCD", and "ABCD-Scene".  For each of these 10 

three trial types, we considered all possible sets of transitions (e.g., {CT}, {AB, BC}, {AB, CT, CD, TD}, etc. for 11 

a total of 127 different sets of transitions).  We trained and tested a Linear Discriminant Analysis (LDA) classifier 12 

(Fisher, 1936) on each set of transitions using the Leave-One-Out Cross Validation technique (LOOCV).  In our 13 

case, this meant that for a given set of transitions (e.g., {AB, BC, and TD}), and for the set of 45 participants, one 14 

participant was left out of the training set and the LDA was trained on the other 44 participants. Then LDA 15 

attempted to predict whether the "left-out" participant was an adult or a child. We did this for all 45 participants 16 

and reported the percentage of correct predictions. This procedure was repeated for all 127 possible subsets of the 17 

set of seven item-to-item transitions (i.e., AB, AC, BC, BT, CT, CD, TD). In this way, we were able to determine 18 

i) which set of item-to-item transitions best predicted whether the participant was an adult or a child and ii) how 19 

good this prediction was.   20 

We then ran an identical LOOCV procedure using a standard, two-class Support Vector Machine (SVM) 21 

classifier (Vapnik, 1993, 1995), using quadratic, polynomial (order 3), and radial-basis-function (RBF) kernels.  It 22 

is generally accepted that SVMs are some of the most powerful classifiers that exist.  We also tested a standard 23 

backpropagation network with 10 hidden units, learning rate = 0.005, momentum = 0.9, one output node, and a 24 



Evaluating analogy-making eye-tracking algorithms  French, Glady, Thibaut 

19 

 

number of input nodes corresponding to the number of item-to-item transitions being tested.  However, while we 1 

found that its classification performance was acceptable, these networks were extremely slow, on the order of two 2 

orders of magnitude slower than the LDA and SVM algorithms.  We have, therefore, not included them in this 3 

comparative analysis. 4 

LDA 
Scene ABCD ABCD-Scene 

P(Correct- 

prediction)  

Transition 

profile 

P(Correct- 

prediction)  

Transition 

profile 

P(Correct- 

prediction)  

Transition 

profile 

0.70 AB AC BT 0.79 AC  CT 0.64 AB 

0.70 AB BT CT TD 0.76 AB CT 0.64 AB BC 

0.70 
AB BT CT CD 

TD 0.74 AC BT CT 0.63 AC 

0.69 AC BC CT  0.72 BC CT 0.63 AC BT 

0.68 BT CD 0.71 AB BC CT 0.62 AC CD TD 

0.675 AC BC CD TD 0.71 AB BT CT 0.62 AC BC BT 

Table 1a 5 

SVM with RBF kernel 
Scene ABCD ABCD-Scene 

P(Correct- 

prediction)  

Transition 

profile 

P(Correct- 

prediction)  

Transition 

profile 

P(Correct- 

prediction)  

Transition 

profile 

0.74 BT CD 0.8 AB BC CT CD 0.82 AB AC BC 

0.675 AC BC CD TD 0.79 BC CT 0.77 AB AC BC CT 

0.67 AB BT 0.79 AC CT 0.75 AB BC CT 

0.66 
AC BC BT CD 

TD 0.78 AB CT 0.75 AB BT CT TD 

0.61 AC BC TD 0.78 AB CT CD 0.75 AB AC BC BT 

0.61 AC BC CD 0.78 AB AC BT CT 0.74 AC CT 

Table 1b. 6 

Tables 1a, b:  Correct-prediction probabilities using LDA (Table 1a) and SVM with an RBF kernel (Table 1b) for 7 

the six best sets of transition profiles for the three types of analogy problems.  8 

 9 

We considered only the transitions during the first third of each trial. The predictive power of the six best 10 

transition profiles for each problem type is shown for LDA (Table 1a) and SVM with an RBF kernel (Table 1b).  11 

We have only shown the results for the LDA classifier, which had the poorest classification performance, and the 12 
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SVM classifier with an RBF kernel, which had the best.  The runtimes of all classifiers were approximately the 1 

same.  2 

Somewhat counterintuitively, prediction based on item-to-item saccade profiles is better if we look only at 3 

the first third of the trial than if we consider the whole trial.  This is because over the course of the entire trial 4 

some item-to-item saccades for adults and children tend to balance out.  For example, children may look at the CT 5 

transition more than adults in the first third of the trial, but less than adults in the final third.  As a result, the 6 

overall number of CT transitions over the course of the whole trial evens out between children and adults, and for 7 

this reason, does not provide a good means of discriminating adults from children.  On the other hand, the number 8 

of CT transitions in the first third of a trial is significantly different for children and adults and allows the two 9 

groups to be discriminated. 10 

Finally, we looked at the overall number of item-to-item saccades for all participants during the first third of 11 

each trial for adults and children for the three types of analogy problems (Figure 6).  Children, in general, take 12 

longer than adults to do a given problem and, as a result, have a higher total number of saccades for each problem. 13 

For this reason, for each participant we normalized the data for each saccade type (i.e., AB, CT, etc.) by dividing 14 

his/her number of saccades for that saccade-type by his/her total number of saccades. We compared these 15 

normalized frequency values for each saccade type to the sets of transitions used by LDA and SVM to produce 16 

the best predictions as to whether an adult or child was doing an analogy problem. 17 

 18 

Discussion 19 

This paper is not a paper about analogy making per se.  Rather, it is about the quality of the classification 20 

methods and machine-learning techniques used to analyze eye-tracking data produced in the study of dynamics of 21 

analogy making.  That said, it should be noted that these techniques, when applied to eye-tracking data generated 22 

by children and adults during analogy problem solving, have allowed us to answer an outstanding problem in the 23 
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field of analogy -- namely, that children use different strategies than adults when solving analogy problems.   1 

Most importantly, in terms of methodology, we compared a number of widely used scanpath algorithms and 2 

found that the Jarodska et al. (2010) algorithm is the most efficient for examining scanpaths for analogy making. 3 

We also applied classic (LDA) and advanced (SVM) classification techniques to sets of transitions making up 4 

scanpaths and demonstrated that these machine-learning techniques can be used to predict well above chance and 5 

in the first several seconds of a trial, whether the participant doing the problem is a child or an adult.  We also 6 

found that SVM with an RBF kernel produced the best adult/child predictions of the four classifiers tested.  And 7 

finally, we found that certain subsets of item-to-item saccades predict whether a child or an adult is doing a 8 

problem better than the full set of item-to-item transitions.  9 

 10 

Diff/Max AB AC AT BC BT BD CT CD TD 

Scene 0.13 0.35 0.21 0.24 0.45 0.27 0.08 0.61 0.08 

ABCD 0.29 0.36 0.46 0.14 0.55 0.34 0.93 0.19 0.37 

ABCD-Scene 0.10 0.29 0.24 0.33 0.38 0.26 0.06 0.26 0.28 
 11 

Table 2. Differences between the (normalized) number of transitions for adults and children  12 

compared to the maximum number of transitions
1
.  13 

 14 

                                                 

1 These values are calculated as follows. Consider the BC transition for the ABCD problem type.  For children, 

the normalized number (i.e., fraction of the total number of transitions) of BC transitions was 0.28 and for adults 

this value was 0.24.  The Diff/Max value in the table is obtained by taking the absolute value of the difference 

between these two values (i.e., 0.04) and dividing it by the maximum of both values (i.e., 0.28).  Thus, we have 

(0.28-0.24)/0.28  = 0.14. 
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Table 2 shows the normalized differences (Diff/Max) between adults and children in the numbers of each 1 

type of transitions for the three kinds of analogy problems for the first third of each trial. (The larger the value, the 2 

larger the difference will be between adults and children for a particular transition type.) Both LDA and SVM 3 

make use of the distinguishing differences between adults' and children's transition profiles during the first third 4 

of a trial in order to make their  predictions. Thus, at least one of the transitions in a set of transitions used for 5 

prediction will, almost certainly, be a transition for which there is a large normalized difference between adults 6 

and children.  Consider the subsets of transitions that resulted in the best predictions by the SVM-RBF algorithm 7 

for the three analogy-problem types.  For the Scene analogies, SVM used the BT and CD transitions to produced 8 

the best prediction of whether a child or an adult was doing a problem (74% accuracy).  When we look at Table 2, 9 

we see that the two transitions that have the greatest normalized difference between adults and children are BT 10 

(0.45) and CD (0.61).  For the ABCD analogy problems, the Diff/Max value of the CT transition (0.93) is nearly 11 

twice as large as any other transition and this transition is present in all six of the transition sets that give excellent 12 

adult/child predictions (78-80% accuracy). Finally, for transitions for the ABCD-Scene problems, there is little 13 

variation between the normalized differences in Table 2 between adults and children.  The top three transitions, 14 

based on their normalized differences, are BT (0.23), BC (0.19), AC (0.17).  The six best distinguishing subsets, 15 

ranging in prediction accuracy from 74% to 82% correct, all include at least one, and generally, two of these three 16 

transitions.  17 

The point, in terms of methodology, is that, when predicting whether a child or an adult is doing the analogy 18 

problem (or what the outcome of the trial will be) by spotting differences in strategies early in a trial, these 19 

classification algorithms provide an extremely powerful means of doing this.  Analyses using LDA or SVM not 20 

only allow us to observe early on differences in strategies that distinguish adults from children, but also reveal 21 

that differences in strategies also depend on the type of analogy problem being done.  So, for example, for the 22 

ABCD analogy problems, both LDA and SVM show the CT transition to be important for adult/child 23 
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classification, a fact borne out by the transition frequency counts in Table 2.  On the other hand, these same 1 

analyses show that the CT transition is less important for the Scene and ABCD-Scene problems in predicting the 2 

age group (Child/Adult) of the participant.  3 

Finally, it was not lost on us that these techniques could be applied to determining from the first third of a 4 

trial whether or not a correct answer would be given by a child for a particular problem. (Adults, for all intents 5 

and purposes, always answer the problems correctly, so we only ran this analysis with children.) Although we do 6 

not present the data in this article, we ran a second experiment very similar to the one described above in which 7 

we looked at this. These results have been reported in French & Thibaut (2014).  We found that by looking at a 8 

set of two item-to-item transitions, {AB, CT}, in the first 3 seconds of a trial, we could predict with an accuracy 9 

well above chance (62.5%) whether the child would answer a given problem correctly or not.  10 

The bottom line is that scanpath-comparison algorithms and the machine-learning techniques that 11 

accompany them are powerful tools to study the dynamics of analogy making. In building models of analogy 12 

making, we want to know what the models predict and how they make those predictions.  And, while the tools 13 

presented in this paper are more about prediction than explanation, the two are hardly unrelated, especially when 14 

we know the bases of the predictions. Our overarching goal has been to point reseachers in analogy making 15 

towards tools and analysis techniques that will allow them to better study the dynamics of how people solve 16 

analogy problems.    17 

 18 

Conclusion 19 

Eye-tracking technology has come of age.  Equipment that, as little as a decade ago, cost tens of thousands of 20 

dollars can now be purchased for several hundred. More and more researchers in the behavioral sciences are using 21 

this technology to probe the mechanisms underlying diverse cognitive skills, in general, and analogy-making, in 22 

particular.  By comparing a number of scanpath-comparison algorithms and machine-learning techniques that can 23 
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be applied to the raw data generated by eye-trackers, we hope to have pointed researchers to the tools that will 1 

best serve them as they attempt to study the dynamics of analogy making.  2 
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