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Abstract 

We investigated what happens when the spontaneous 

encoding of a problem is incongruent with its solving 

strategy. We created word problems from which two distinct 

semantic representations could be abstracted. Only one of 

these representations was consistent with the solving strategy. 

We tested whether participants could recode a semantically 

incongruent representation in order to access another, less 

salient, solving strategy. In experiment 1, participants had to 

solve arithmetic problems and to indicate which problems 

were unsolvable. In experiment 2, participants received 

solved problems and had to decide whether the solution was 

appropriate or not. In both experiments, participants had more 

difficulties acknowledging that problems inducing an 

incongruent representation could be solved than they had for 

problems inducing a congruent representation. This was 

confirmed by response times. These results highlight how 

semantic aspects can lead even adults to fail or succeed in the 

solving of arithmetic problems requiring basic mathematical 

knowledge. 

Keywords: arithmetic problem solving; semantic 
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Introduction 

The view that solvers build an abstract problem schema 

that guides a solving strategy free of contextual effects such 

as the semantic content of the problem has been challenged 

by recent investigators (e.g. Kotovsky & Simon, 1985; 

Bassok & Olseth, 1995). They have argued that the 

representation of the situation (objects, relations between 

objects) of a problem influences the solving procedure by 

reference to mental models (Reusser, 1990) that are mental 

constructs analogous to the situation depicted in the 

problem. Further work has shown that elements that are 

irrelevant from a mathematical point view (e.g. the type of 

objects referred to in the problems) were taken as cues while 

constructing an interpreted structure that solvers were using 

as a frame during the solving process (Bassok, Wu & 

Olseth, 1995). Recent studies have highlighted the 

importance of such a framework (Bassok, DeWolf & 

Holyoak, 2015; Lee, DeWolf, Bassok, Holyoak, 2016). The 

existence of an abstract interpreted structure raises the 

question of its congruence with the algorithm relevant for 

the solution. For example it has been shown that 

spontaneously, additions are associated with objects 

belonging to the same level of categorization, such as 

oranges and apples, and not to functionally connected 

objects such as oranges and baskets, even though there is no 

mathematical reason why one would not add these two types 

of objects (Bassok, 2001). To what extent can the algorithm 

be used when the interpreted structure is not congruent with 

the mathematical one? To date, it remains an open issue to 

show whether an incongruence between the representation 

abstracted from the wording and the mathematical structure 

will lead the solver to a dead end, even if the solving 

algorithm is one which only requires mathematical skills 

already mastered by the solver.  

In order to investigate the representational issues, recent 

studies focused on problems that were solvable by 

alternative strategies, each one relying on a specific 

representation (Thevenot & Oakhill, 2005, Coquin-Viennot 

& Moreau, 2003, Gros, Thibaut & Sander, 2015). They 

showed that the strategy that was used to solve the problem 

was strongly constrained by the representation solvers were 

relying on. The present study is based on this type of 

problems. The main question addressed regards what 

participants do when the solving strategy associated with the 

representation spontaneously evoked by the problem is 

prohibited due to the lack of some necessary information. In 

other words, what happens when the “door” the participants 

usually use is blocked? Will solvers switch to an alternative 

representation congruent with the other strategy, which is 

still practicable, or will they remain stuck to their initial 

representation and think that the problem has no solution? In 

the latter case, it would mean that their initial representation 

of the problem is so constraining that they became blind to 

the alternative one and to the strategy associated with it. The 

solvers would thus be incapable of noticing and using the 

other “door”, yet wide open and leading to the solution. 

Content effects 

The characteristics of the situation depicted in a word 

problem have been shown to influence the solver’s ability to 



find the correct solution of a problem. Isomorphic problems 

sharing the same mathematical structure can thus have 

different levels of difficulty depending on their wording (De 

Corte, Verschaffel, De Win, 1985). 

More specifically, the influence of a wide range of 

abstract semantic properties on the encoding of word 

problems has been highlighted in different studies: 

continuous versus discrete property of a constant change 

(Bassok & Olseth, 1995), continuous versus discrete 

property of the entities of a problem (DeWolf, Bassok & 

Holyoak, 2015), symmetrical versus asymmetrical property 

of a relation (Bassok, Wu & Olseth, 1995), categorical 

versus functional property of an association between 

elements (Bassok, Chase & Martin, 1998) have all been 

shown to influence the solving strategies used by the 

solvers. 
Overall, the crucial role of such abstract semantic features 

on the representations involved in problem solving 

demonstrates that any solving task necessarily depends on 

the solver knowledge regarding the elements included in the 

problem. This world knowledge can ease the solving 

process when the semantic information is congruent with it, 

or it can inversely impair the solving of a problem if the 

available information leads to a representation that is not 

congruent with the solving strategy. 

Multiple-strategy word problems 

In order to address this issue, Gamo, Sander & Richard 

(2010) studied multiple-strategy word problems in which 

the solution could be found in two different ways: either a 3-

steps strategy requiring to perform a complementation 

inference (where the value of the difference between a set 

and a whole is calculated), or a 1-step strategy based on a 

comparison inference (requiring the calculation of the 

difference between two homologous quantities). According 

to Bosc-Miné and Sander (2007), it is easier to make a 

complementation inference when the context highlights the 

part/whole relation between the elements, as is the case in 

problems featuring cardinal values. On the other hand, an 

ordinal representation of the values usually highlights the 

comparison relations between the featured values, and thus 

promotes comparison inferences. This effect is fairly 

intuitive when we consider prototypes of these two 

categories of problems: 

-        Problem A: “John bought a 5€ exercise book and 

scissors. He paid 14€. A pen costs 3€ less than the exercise 

book. Paul bought scissors and a pen. How much did he 

pay?” 

-        Problem B: “Antoine took painting classes for 5 

years, and stopped when he was 14 years old. Jean began at 

the same age as Antoine and took the course during 3 fewer 

years. At what age did Jean stop?” 

Both types of problems can be solved using two identical 

strategies, namely the complementation-difference strategy 

(14-5=9 then 5-3=2 then 9+2=11, in which 11 is the answer) 

and the comparison-difference strategy (14-3=11, in which 

11 is the answer). Yet, data collected by Gamo et al. (2010) 

showed that the comparison strategy is only scarcely used 

(4% of the situations) on problems similar to the problem A, 

which evoke a cardinal part/whole representation, whilst 

this strategy is widely used (64% of the problems) to solve 

the problems comparable to the problem B, in which the 

difference between the duration of the two classes is directly 

encoded in the ordinal representation of the problems. On 

the other hand, using the comparison on problem A requires 

to identify that the difference between the total amount paid 

by Paul and by John is equal to the price difference between 

the pen and the exercise book. The price of the scissors 

doesn’t need to be calculated to solve the problem. 

In order to gain a better understanding of these two types 

of induced representations, it is possible to draw a schema 

of their structure. Regarding the problem A, Gamo et al. 

(2010) suggested that the interpreted representation is 

cardinal. We can thus represent the different elements of the 

problem as depicted in figure 1.a. 

 
Figure 1.a: Cardinal representation of headcount problems 

such as those found in Gamo, Sander & Richard (2010). 

 
It is then clear that the representation promotes the 

calculation of the intersection (Part 2) between Whole1 and 

Whole2 in order to get the value of Whole2, thus favoring 

the complementation strategy. The corresponding 

calculations are as follows: Whole1 – Part1 = Part2, then 

Part1 – Difference = Part3, then Part2 + Part3 = Whole2. 

 
Figure 1.b: Ordinal representation of age problems such as 

those found in Gamo, Sander & Richard (2010). 

 

Now regarding problem B, the expected representation 

has an ordinal nature, and can be drawn as on Figure 1.b. 

The ordinal representation of problem B values puts forward 

the fact that the difference between Whole1 and Whole2 is 

equal to the difference between Part1 and Part3. It is 

straightforward to deduct that the quickest solving strategy 



is the 1-step comparison strategy: Whole1 – Difference = 

Whole2. 

The solving strategy thus is directly encoded in the 

representation built, despite the fact that these two problems 

are isomorphic. Only an expert able to have a more 

exhaustive comprehension of the mathematical relations 

between the elements of these problems could access an 

abstract representation subsuming the other two, as detailed 

in Figure 1.c. 

 
 

Figure 1.c: Abstract representation of the mathematical 

structure of the problems found in Gamo et al. (2010). 

 

This structure can equally depict both problems, and 

makes it possible to use both solving strategies. The 

variations observed in the choice of one strategy over the 

other clearly indicate that the participants only abstracted 

intermediate, context-specific representations (with either 

ordinal or cardinal structure) instead of the abstract 

mathematical structure of the problems. It therefore seems 

that the semantic nature of the quantities used has a major 

impact on the type of representation being evoked, and 

subsequently on the type of solving strategy being used. 

In what follows, we used the two types of problems 

described above. The above analysis shows that the 

quantities grounding each solving strategy differ. We gave 

participants problems in which one quantity was missing. 

As a result, they could not be solved according to one 

strategy (the 3-steps strategy) while remaining solvable 

according to the other. The issue was whether participants 

would use the other solving strategy (the 1-step strategy) in 

all cases or, by contrast, whether they would more often fail 

to solve them when their spontaneous strategy depended on 

knowing the value of the missing data than when the 

missing data was not necessary for making use of their 

spontaneous solving strategy. 

Experiment 1 

Materials 

We created a set of problems which shared the same 

mathematical structure as described in figure 1.c, with one 

notable exception: we removed one of the numerical values 

so that participants could not access the 3-steps 

complementation strategy anymore, and solely had to rely 

on the 1-step matching strategy in order to solve the 

problems. Instead of asking participants to solve the 

problems with the fewest possible steps, we tested whether 

the preference for the semantically congruent strategy could 

lead to failure to solve the problems when only one of the 

two strategies was available.  

We thus created two types of problems: (i) solvable 

problems, in which we removed the “part 1” value, making 

it impossible to use the 3-steps complementation strategy 

(see left part of figure 2), and unsolvable problems, where 

the value of Whole1 was not given, making it impossible to 

solve the problems using any strategy (see right part of 

figure 2). The latter were used as distractors. 

 

 
 

Figure 2: Structure of both solvable and unsolvable 

problems. Underlined values are those given in the problem. 

The goal was in both cases to find the value of Whole 2. 

 

We implemented those two types of problems with 

different quantities inducing either an ordinal representation 

or a cardinal representation. Six different quantities were 

used in total; three ordinal quantities (duration, height, and 

number of floors) and three cardinal quantities (weight, 

price, number of elements). For each quantity, we created 

two different problems so as to make sure that the effects 

measured could not be attributed to one specific context. 

Those 12 problems were present in both forms: solvable 

problems and unsolvable problems, making a total of 24 

problems in the pool. Finally, the problems were all written 

in the same way: the same number of sentences was used, 

and the numerical values (each below 15 so as to limit the 

calculus induced difficulties) were presented in the same 

order. 

Procedure and experimental design 

Each participant was presented with 12 different problems: 

2 for each quantity, a solvable problem and an unsolvable 

one. The 6 unsolvable problems acted as distractors since 

we tested our hypotheses with the solvable problems. The 

order in which the problems were presented was 

randomized for each participant, and so were the two 

different versions of each problem. 

The experiment took place online, on the survey platform 

Qualtrics. Participants who agreed to participate in the 

experiment were asked to complete the entire survey. On the 

first page, the following instructions were given: “You will 

find an arithmetic problem on each page of this survey. 

Please take the time to read and understand each of these 

problems, as this is not a speed test. Your task is to identify 

which problems can be solved and to indicate for each of 

them the operation you used to solve them as well as the 

solution you found. Be careful: some of the problems cannot 

be solved with the available information.” 



On each page of the survey, a problem was displayed with 

the following question below it “Given the data provided, is 

it possible to find the solution?” with two buttons “Yes” and 

“No”. When the participants pressed “Yes”, two new 

questions appeared, asking them to indicate both the 

operation needed to solve the problem and the result of the 

operation. Participants used the keyboard to write down 

their answers. After participants answered all 12 problems, a 

new page was displayed asking them for their gender, date 

of birth, and whether they took any break during the 

completion of the experiment. 

Participants 

A total of 89 adults completed our experiment. We removed 

from the analyses 15 participants who either mentioned 

taking a break during the test or answered at least one of the 

questions in less than 5 seconds or more than 5 minutes, 

which gave 74 participants (44 females, M=33.8 years, 

SD=13.4 years). Subjects were all fluent French speakers 

and were recruited through social networks and emails.  

Hypotheses 

Our first hypothesis regarded the ability to correctly solve 

the problems that induced a representation which was 

semantically incongruent with the solving strategy. We 

hypothesized that participants would have a better rate of 

success on solvable problems with ordinal quantities 

compared to solvable problems with cardinal quantities, 

because participants whose first spontaneous representation 

was associated with a 3-step strategy would fail to switch to 

a representation of the problem associated with the 1-step 

strategy. 

Our second hypothesis regarded the situations in which 

participants overcame the difficulty related to an 

incongruent representation and managed to find the correct 

solution of a cardinal problem. We hypothesized that higher 

response times would be recorded on successfully solved 

cardinal problems compared to successfully solved ordinal 

problems. 

Results 

 

 
Figure 3: Rate of correct solving on solvable problems. 

Vertical bars denote 0.95 confidence intervals. 

 

In order to test our first hypothesis, we analyzed the ratio of 

correct answers on solvable problems, depending on the 

cardinal or ordinal nature of the quantities used. Ordinal 

solvable problems were successfully solved in 91.9% of the 

trials, and cardinal solvable problems in only 68.5% of the 

trials (see Figure 3). A paired t-test was performed on 

participants’ mean rate of success for cardinal and ordinal 

problems and showed that the difference was statistically 

significant (t(73)=6.38, p<0.001), therefore confirming our 

first hypothesis. 

We then studied the response times on correctly solved 

problems, depending on the nature of the quantities in the 

problems. We wanted to see whether accessing the correct 

1-step matching strategy on problems inducing a 

semantically incongruent cardinal representation would 

require a higher time than needed for problems inducing an 

ordinal representation. We removed from the analysis 4 

participants who did not manage to correctly solve at least 1 

cardinal problem and 1 ordinal problem. On average, 

participants took 68.7 seconds to successfully solve cardinal 

problems, against 49.8 seconds for ordinal problems (see 

Figure 4). A linear mixed model applied to the response 

times of successfully solved problems confirmed that the 

difference was significant (F(1,7369)=20.38, p<0.001), thus 

verifying our second hypothesis. 

 
Figure 4: Mean response time on correctly solved problems. 

Vertical bars denote 0.95 confidence intervals. 

Discussion 

The results obtained confirmed that depending on the 

semantic nature of the quantities present in arithmetic word 

problems, participants induced a semantic representation 

which was either semantically congruent (ordinal) or 

semantically incongruent (cardinal) to the only solving 

strategy available. The fact that the rate of success was 

significantly different between these two types of problems 

showed that the semantic congruence does not just promote 

one strategy over the other (see also Gamo, Sander & 

Richard, 2009; Gamo, Taabane & Sander, 2011), but can 

actually lead participants to failure when only one strategy 

is available. Therefore, a semantically incongruent 

representation can significantly impair the solver’s ability to 

find the solution of a problem if no semantic recoding takes 

place.  



The study of the response times gave us insights into the 

need of such a recoding process. The longer time needed to 

solve cardinal problems suggested the existence of an extra 

reasoning step which allowed the solver to access a 

semantically incongruent solving strategy. The fact that the 

response rates were different for cardinal and ordinal 

problems suggested that such a process does not 

systematically happen and the longer RTs showed that this 

recoding step was a costly one. 

In order to better understand these processes, in a second 

experiment, we explicitly gave the answer to the 

participants, and asked them to evaluate its validity. The 

goal was to go beyond the first experiment by evaluating 

whether the difficulty lied in the ability to discover the 

solution, or in the capacity to recognize it as a valid one.  

We made the hypothesis that, even when presented with the 

complete solution, participants would tend to refuse it more 

often if the representation they inferred from the problem 

was semantically incongruent with the solution. They would 

essentially refuse to use the door presented in front of them, 

because of their semantically biased representation of the 

situation. 

Experiment 2 

Procedure 

The only aspect in which this experiment differed from the 

previous one was the nature of the task proposed to the 

participants. Instead of telling them to solve the problems 

themselves, we proposed a potential solution for each 

problem, and asked them to identify whether the solution 

was a valid one, or whether the problem could not be 

solved. For every problem, the question “Given the data 

provided, is it possible to find the solution?” was displayed, 

and below two choices were available: “No, we do not have 

enough information to solve this problem.” and “Yes: 

numerical value 1 – numerical value 2 = answer. Sentence 

presenting the answer”. For example, on one of the “number 

of floors” problems, the following solution was given: “Yes: 

11-2=9. Karine arrives at the 9th floor.” 

Participants 

A total of 223 adults completed our experiment. 27 of them 

were removed from the analysis according to the same 

criteria as in the previous experiment, and the analyses were 

performed on the remaining 196 participants (135 females, 

M=34.5 years, SD=14.8 years). Subjects were native French 

speakers recruited through social networks and emails.  

Hypotheses 

We expected to find the same results as in the previous 

experiment. Even though the solution was directly given to 

the participants, we hypothesized that they would still refuse 

it more often for problems with cardinal quantities than for 

ordinal problems. Similarly, we hypothesized that the 

correct identification of a solution would require more time 

for cardinal problems than for ordinal ones. 

Results 

As in the previous experiment, we first analyzed the ratio of 

correct answers on solvable problems depending on the 

semantic nature of the quantities used. The results detailed 

in Figure 5 showed that the solvable cardinal problems did 

indeed lead to a lower rate of success (63.6%) than the 

solvable ordinal problems (88.4%).  

 
Figure 5: Rate of correct answers on solvable problems. 

Vertical bars denote 0.95 confidence intervals. 

 

A paired t-test performed on the participants’ mean rate of 

success confirmed that this difference was significant 

(t(195)=9.26, p<0.001). 

 
Figure 6: Mean response time on problems where the 

solution was correctly identified. Vertical bars denote 0.95 

confidence intervals. 

 

In order to assess the validity of our second hypothesis, 

we then studied the response time associated with the 

correct answers on solvable problems, thanks to a linear 

mixed model. We removed from the analysis the 26 

participants who did not manage to correctly solve at least 1 

cardinal problem and 1 ordinal problem. Figure 6 shows that 

getting a correct answer required a shorter reasoning time 

for ordinal (38.6 seconds) than for cardinal problems (51.4 

seconds). This difference was statistically significant 

(F(1,169)=30.28, p<0.001), thus confirming our hypothesis. 

Discussion 

This task of solution validity assessment confirmed the 

effects observed on the first experiment, which involved a 

task of solution discovery. Even when participants were 

given the correct answer as well as the operation used to 

calculate it, they tended in more than 35% of the cases to 



reject it if the problem induced a representation that was 

semantically incongruent with it.  

Similarly, even when participants managed to 

successfully identify the correct answers of cardinal 

problems, they needed more time than for ordinal problems, 

which, we believe, indicates semantic recoding. 

These results suggest that the semantic congruence effects 

that have been previously highlighted are not restricted to 

the spontaneous access to a solving strategy, but also to the 

evaluation of a given solving strategy. 

Conclusion.  

These two experiments confirmed that the process to 

overcome a semantic incongruence between an interpreted 

representation and a solving algorithm is a costly one. Both 

the success rates and the response times were influenced by 

the incongruence, therefore showing the prevalence of 

semantic aspects over mathematical ones when faced with a 

situation from which we do not spontaneously abstract a 

solving-relevant representation. 

We believe that these results pave the way for the 

emergence of a new approach to problem solving, 

integrating the three main components of any problem 

solving activity: the procedural aspects (the algorithms), the 

representations inferred from the solver’s knowledge about 

the world, and the mathematical structure of the problems. 

We think that characterizing the way these three levels of 

description interact would deeply contribute to the 

understanding of the underlying cognitive processes. In this 

study, we tried to describe how a representation inferred 

from the world semantics can prevent the solver from 

accessing the relevant solving algorithm. Even when this 

algorithm only consists in a mere subtraction.  

This underlines the importance to conduct extensive work 

on mathematical reasoning from an educational perspective 

in order to help the learners overcome semantic congruence 

effects. The robustness of these processes among adults 

suggest that they cannot spontaneously disappear, and 

instead need to be the target of a substantial and focused 

teaching so as to be reduced. As it has already been 

highlighted (Bassok, Chase & Martin, 1998; Lee, DeWolf, 

Bassok, & Holyoak, 2016), mathematics textbooks tend to 

preferably use semantically congruent examples when 

teaching a specific arithmetic concept. Yet, our study seems 

to indicate that people face greater difficulties when trying 

to solve incongruent problems compared to congruent ones. 

Would it not be preferable, then, to teach students how to 

specifically address these situations, and how to resort to a 

semantic recoding of their initial representations? Maybe 

then, the remaining door would be available to them. 
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