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Abstract 
We use eye-tracking data, analyzed by a neural network and 
by Linear Discriminant Analysis (LDA), to study the 
temporal dynamics of children's analogy making. We 
determine how well the number of item-to-item saccades 
while solving an analogy problem predicts whether or not a 
child will correctly answer the problem. For the A:B::C:D 
visual analogy problems, by the first third of the trial we can 
tell with 64% accuracy whether or not the problem will be 
answered correctly. Two-thirds of way through the trial, we 
can predict with 82% accuracy the answer that will be given. 
By looking only at the final third of the trial, we can predict 
with up to 90% accuracy what the child will do. Average gaze 
times at the Target and Distractor items have the same 
predictive power as the item-to-item saccade information.  
 

Keywords: Analogical reasoning; development; eye-tracking; 
strategies, prediction in analogy making 

Introduction  
The centrality of analogical reasoning to human cognition is 
not open to debate (Gentner & Smith, 2012; Holyoak, 
2012). On the other hand, there are many open questions 
surrounding how analogy making occurs and how the ability 
to do analogies develops over time. 

Very little work has been done on the dynamics of 
solving analogy problems. The vast majority of experiments 
involve selecting particular items as the solution to an 
analogy problem. This is a static approach to analogy 
making and, by definition, cannot address the issue of how a 
strategy evolves during an attempt to solve a problem. For a 
number of years, we have used eye-tracking technology to 
study analogy-making strategies, particularly in children. As 
an analogy problem is being solved, the information sought 
and manner in which it is sought can be elucidated by the 
visual strategies by the problem solver. The amount of 
attention paid to a particular item and the gaze-fixation on 
that item have been shown to be highly correlated, in 
particular, for complex stimuli (Deubel & Schneider, 1996; 
He & Kowler, 1992). In addition, the fixation time 
associated with a given item correlates with its 
informativeness (Nodine, Carmody, & Kundel, 1978). All of 
this argues in favor of using eye-tracking technology to 
study analogy-making strategies.  

There are only a small number of eye-tracking studies 
involving analogy-making in adults (e.g., Gordon & Moser, 
2007) and even fewer in the area of the development of 

analogy-making abilities in children. One of the first 
developmental  analogy-making  studies  was  one  by 

 

 
Figure 1. The type of A:B::C:? analogy problems used in the 
present study 

 
Thibaut, French, Missault, Gérard & Glady (2011) in which 
they established that children’s and adults’ analogy-making 
strategies differed. They showed, in the context of the 
A:B::C:? paradigm, that “adults looked more at A and B 
than at C and Target and that they start with A and B before 
looking at C and D, [whereas children] spent significantly 
more time than adults on C and the Target item (or 
distractors) and less on A and B.” 

More recently Glady, French & Thibaut (2013) focused 
not on looking times, but rather on full gaze-saccade paths 
(called scanpaths) of adults and children on three different 
sets of analogy problems. They developed a novel technique 
for analyzing these scanpaths that involved: i) modifying an 
algorithm developed by Jarodska, Holmqvist, & Nyström 
(2010) that calculated a “distance” between any two 
scanpaths, ii) using a classic multidimensional scaling 
algorithm to represent each scanpath as a point in R2 in such 
a way as to optimally preserve the distances calculated by 
the Jarodska et al. algorithm, and iii) using a multi-layered 
perceptron with a Leave-One-Out cross-validation 
procedure to classify and test these points according to 
whether they corresponded to scanpaths generated by adults 
or by children. By means of this technique they were able to 
demonstrate that there was, indeed, a clear difference in the 
dynamics of strategies used by children and adults in 
solving analogy problems of the form A:B::C:D. However, 
this technique revealed only that adults’ and children’s 
analogy-making strategies were different. The present paper 
is an attempt to answer a closely related question using eye-
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tracking methodology that expands on this previous work. 
The question is the following:  

To what extent can we determine whether a child 
will answer a given analogy problem correctly or 
incorrectly based solely on an analysis of his/her 
patterns of eye movement at various times during 
the trial?  

In the present paper, we divide each scanpath into three 
identical time segments, which we label “initial”, “middle”, 
and “late” and which correspond to the 1st,  2nd, and 3rd 
thirds of the full time interval over which the scan occurred.  
Within each of these three segments we will determine the 
predictive value of the child’s pattern of item-to-item 
transitions (e.g., how often does he/she saccade from item A 
to item B, from C to the Target item, etc?).  

In what follows we will first present the experiment that 
we ran and graphically present the item-to-item transition 
data from that experiment. We will then analyze by means 
of a multi-layer perceptron (and a linear discriminant 
analysis) the predictive value of this data in determining, as 
early as the initial time segment, the answer that children 
will give on the analogy problem they are attempting to 
solve. 

Experiment 

Methods 

Participants 
Thirty-nine 5-year-old children (M = 5;7, age range, 4;9-

6;2 ), thirty-seven 8-year-old children (M = 8;8, range 8;0 – 
8;10), 23 adolescents (M = 13;9, range 13;3-14;3) and 20 
adults (M = 21;7, range 19;4-25;4) participated in the 
experiment. We tested a larger number of children because 
we expected a greater loss of eye-tracking data for the 
younger groups. In each of the time slices, if there were no 
recorded item-to-item transitions (i.e., the child was not 
looking at the screen), we removed the child from the data 
for that slice. The data removed was approximately the 
same for the younger and older children. We had to remove 
25%, 28%, and 30% of the data for the initial, middle and 
final time slices, respectively. Only children were 
considered for this experiment, since for essentially all 
adolescents and adults responded correctly to all analogies. 

Informed consent was obtained from the children’s 
parents.  

Materials 
The experiment consisted of a total of 14 trials divided 

into 2 practice trials and 12 experimental trials. Each of the 
two distractor conditions (No or 1 semantic distractor) 
consisted of 6 trials. Each trial contained 7 drawings -- 
namely, the items corresponding to the A, B and C items 

and the 4 drawings that were shown as the solution set, 
including the analogical match (hereafter, “Target” or, 
simply, “T”). In the one-semantic-distractor case, there was 
one semantically related distractor (“SemDis”, or simply 
“D”), and two distractors that were semantically unrelated to 
C (“UnDis”, or simply “N”). (Note: There are two 
UnRelated Distractors in each problem. We averaged the 
looking times to these two distractors and used this value for 
N.) In the No-Semantic-Distractor condition the three 
distractors were semantically unrelated to C. In the scanpath 
analysis described in this paper, however, we consider only 
the trials in which there was a semantic distractor. The 
reason for this was that when there was no semantic 
distractor, all children solved the analogy problem correctly. 
We are interested in predicting whether or not a child will 
answer the problem correctly based on his/her gaze pattern 
and therefore a semantic distractor was necessary to induce 
the children to answer some problems incorrectly. 

The experiment was run with the E-prime software. 
We used a Tobii T120 to record gazes. 

Procedure  
Two experimenters saw the children individually at their 

school in a quiet room or, for the adults, in our laboratory. 
Participants were seated in front of the Tobii screen with 
their eyes at a distance of approximately 40 centimeters. For 
each participant, the experiment started with a calibration 
phase which followed the protocol specified for the 
apparatus. 

The participants were then shown picture cards of each 
of the items used in the experiment and were asked to give 
their names. When they did not know an item’s name, they 
were asked to describe it functionally. The children knew 
96% of the names and when they did not, in most cases, 
they were able to give a description showing that they knew 
the stimulus. The percentage of cases where children could 
not name the item or could not provide a correct description 
(functional or contextual) was 1%. In these cases, the 
experimenter gave the children the missing information.  

Each trial began when the experimenter pressed the 
space-bar. The 7 stimuli for each trial were displayed 
simultaneously on the screen. The A:B pair and the C item 
were shown in an array with the first two items grouped 
together to the left of the screen. The C item was alone on 
the right of the screen and next to C there was a box with a 
question mark. The four solution items were displayed on a 
separate row, beneath the A  B  C  ?  row (see Figure 1). 
Participants were asked to point to the item in the lower row 
that best completed the series of items in the upper row (cf. 
Goswami & Brown, 1990). The first two trials were training 
trials and participants received feedback. In these two 
training trials the experimenter explained why the Target 
was  the  correct  solution and  incorporated the relation 
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Figure 2a: Transition counts for Correct answers vs. Errors as a function of Time-Slice and Transition-type. 
 

  
Figure 2b.  Item gaze times for Correct answers vs. Errors as a function of time-slice and item type. 

 
 

holding in the A-B pair in his/her demonstration. In the 
experimental trials, the experimenter gave no further 
information to children. For each experimental trial, reaction 
times were recorded by the experimenter. Participants were 
instructed to point to the stimulus on the screen 
corresponding to their choice “as soon as they had found the 
solution”. They were told that they were to point to only one 
stimulus per trial. The experimenter stopped timing the 
participant when he/she pointed to a solution. 

At the conclusion of the experiment, for all the 
experimental trials, children’s understanding of the semantic 
relation between A and B and between C and D was 
assessed. They were shown the A:B pairs and were asked 
why the two items of each pair went together. The same was 
true for the C-D pairs.  

Results 
For the sake of clarity, we will consider only a small 

number of statistical results from this experiment. The 
dependent measure is the average number of transitions 
between items (i.e., saccades from one item to the other) for 
the following item pairs: A-B, A-C, B-C, B-Target, C-
Target, C-SemDis, C-UnDis, and Target-SemDis. These are 
shown in Figure 2a. One effect is of particular importance 
and that is the three-way interaction between Response-
Type x Time-Slice x Transition-Type.  This interaction is 
highly significant: F(14,994) = 3.38, p < 0.0001; η2 = .045. 
In other words, some of the individual item-to-item 
transitions really do count in distinguishing between correct 

and incorrect responses. Not surprisingly, over the course of 
the trial, for children who answered the problem correctly 
the frequency of C-Target transitions increased, whereas for 
those children who answered incorrectly, the frequency of 
C-Distractor transitions increased. We see the same 
evolution when we look at item gaze times (Figure 2b). A 
relatively detailed item-to-item transition analysis allows us 
to predict with considerable accuracy whether or not a child 
will answer a given problem correctly.  

 
Predicting Children’s Answers 

Thibaut et al. (2011) showed that children tend to have 
different item gaze-time profiles than adults for the same 
analogy problem, leading to the conclusion that adults and 
children process analogies differently. Glady et al. (2013) 
reinforced this result using the full scanpaths of adults and 
children. We wondered whether scanpath analyses could 
also be used to whether a child would answer a problem 
correctly or incorrectly. In particular, we wanted to know 
the predictive quality of the pattern of item-to-item saccades 
at various points during the trial. (Note: these analyses were 
not done for the adult data because adults, unlike children, 
answered all of the analogy problems correctly.)  

How the predictions were made 
We used two widely used and relatively simple methods 

to calculate how well the observed item-to-item transition 
patterns in each time slice predicted the final response 
outcome. These were i) a feedforward-backpropagation 
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(FFBP) neural network (Rumelhart & McClelland, 1986) 
and ii) Linear Discriminant Analysis (LDA, Fisher, 1936; 
Rao, 1948). The goal of this paper is not to demonstrate the 
maximum predictive power of item-to-item transition 
patterns. For this there are more powerful classification 
algorithms (e.g., support vector machines, Vapnik, 1995). 
Rather, we wished to demonstrate that very early in solving 
an analogy-making problem, children’s correct (or 
incorrect) response can be predicted at well above chance 
levels by observing their item-to-item saccading patterns. 
FFBP neural-network classifiers and standard LDA 
techniques are sufficient to clearly show this. We used two 
very different classification methods in order to ensure that 
the predictions were not an artifact of the classification 
technique being used.  

Data classifiers—whether LDAs, FFBP neural networks 
or some other classification system—are designed to 
associate items with the categories to which they belong. So, 
for example, if a classifier learns to associate certain feature 
values with the category “dog” and other feature values with 
“cat”, when it encounters a new cat (or a new dog) it should 
be able to correctly classify it. In other words, the classifier, 
based on the cats and dogs that it has been trained on, can 
correctly generalize to new exemplars of each category.  

Data classification can also be used to indicate how well a 
given set of feature values will correctly predict the category 
membership of the item associated with those features. 
There is a standard train-and-test technique for doing this. 
The classifier is first trained on a large, randomly selected 
subset of the original data—for example, 75% or 80% of 
items in the dataset—and is then tested on the remaining 
data. This procedure is repeated many times, each time 
randomly dividing the data into a training set consisting of 
75-80% of the data, and a test set comprised of the 
remaining data. Then average the classification success rates 
over the number of times the procedure was repeated.  

 
Predictions from the data 

We consided the data from the experiment described above 
and the results of which are shown in Figure 2. To analyse 
the data we first used a neural network and then performed a 
linear discriminant analysis on the same data.  

The data input to both classifers consisted of the average 
number of item-to-item saccades for the different pairs of 
items shown in Figure 2. The neural network used had a 
variable number of inputs, depending on the transition pairs 
used. So, for example, if we considered only the transition 
pairs CT (i.e., between C and Target), CD (i.e., between C 
and the semantic distractor), and TD (i.e., between the 
Target and the Semantic Distractor), the neural network 
would have 3 inputs, one for the number of saccades 
associated with each of those three transitions. There were 
always 10 hidden units and one output unit. The learning 
rate was 0.001, with a momentum of 0.9 and a Fahlman 
offset of 0.1. A standard tanh squashing function, with a 
temperature of 1 was used. The network was allowed to run 
for a maximum of 1000 epochs. For each set of transitions, 

we ran the network 30 times, each time training the network 
on 75% of the data and testing it on the remaining 25%. For 
each run, we recorded how accurately the network was able 
to predict the real outcomes (correct/incorrect answer) on 
the 25% of problems that it had not been trained on. 

We began by considering all eight of the transition pairs 
(ie., AB, AC, BC, BT, CT, CD, CN, TD). The question was 
how well the full pattern of transistions predicted the output 
(i.e., correct/incorrect response) based on the average 
number of saccades for each of these transitions during the 
Initial, Middle and Final time segments of the trial?  
We found that using all of the transitions, by the end of the 
first time slice (i.e., after approximately 4.25 seconds of a 
13-second trial, 13 seconds being the mean RT for children), 
we could predict the correct/incorrect outcome of the trial 
with a 64% accuracy. The transition information in the 
Middle time slice was even more informative, predicting the 
outcome of the trial with a 68% accuracy. In the final time 
slice the item-to-item saccade information allowed us to 
predict the outcome of the trial with an accuracy of 86%. 
(See Figure 3.)  

To ensure that these results were not an artifact of the 
classification method or of the item-to-item transition data, 
we performed the same analysis, using the pattern of 
looking times at the various items comprising the problem. 
Thus, input to the network consisted, not of the average 
number of transitions between items, but, rather, the looking 
times at A, B, C, Target (T), SemDis (D), and UnDis (N).  
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Figure 3. The predictive power of the full set of item-to-item 
transitions: AB, AC, BC, BT, CT, CD, CN, TD. (SEM error 
bars) 
 
Using this information, we performed the same analysis as 
with the FFBP  neural network whose parameters are 
indicated above. As can be seen in Figure 4, both of these 
measures, the average number of item-to-item transitions 
and looking times at the various items making up the 
analogy problem, give very similar results. In other words, 
the results shown in Figure 3 do not an artifact of having 
used the number of item-to-item transitions as our 
dependent measure. The accuracy of these predictions is 
also borne out by using as our dependent measure looking 
times at the individual items making up the problem. The 
principles of LDA classification are significantly different 
from those underlying FFBP network classification. For this 
reason, we also applied an LDA classifier on the item-to-
item transition data to ensure that the results in Figure 3 



were not an artifact of the classification method. We used 
the same set of transitions and ran the LDA classifier 30 

 
Figure 4. Accuracy of Correct/Incorrect response 
predictions based on item-to-item transitions and on looking 
times at the items of the problem.  
 
times. As with the FFBP classifier, we used a 75%-25% 
train-and-test split of the data. The results using the LDA 
classifier were essentially the same as those obtained by the 
FFBP neural network classifier (Figure 5).  

It is worth noting that, even though an LDA is not as 
powerful as a FFBP neural network in what it can and 
cannot classify, it is much faster. For example, in the present 
problem LDA was faster than the FFBP neural network by 
two orders of magnitude. And, as can be seen from Figure 5, 
there is no classification performance difference. 

 

Figure 5. Comparing the FFBP neural network classifier and 
an LDA classifier. 

Predictive accuracy of other sets of transitions 

We also explored the predictiveness of different subsets of 
the item-to-item transitions. For this, we used an LDA 
classifier. As  can  be seen in Figure 6, sets multiple 
transitions involving C are the most predictive of the 
outcome of the trial. In fact, by looking at only two item-to-
item transitions, those between C and the Target item and 
those between C and the Semantic Distractor, we can 
achieve a very high degree of prediction accuracy. On the 
other hand, transitions not involving C or any of the 
potential target items are not particularly informative in 
predicting the final outcome of the trial. It is worth noting 
that prediction value of CT transitions increases over time, 
while the opposite is true for TD transitions. 

   

 1st slice 2nd slice 3rd slice 
CT, CD, TD 0.62 0.68 0.9 
CT, CD 0.625 0.72 0.9 
CD, TD 0.61 0.6 0.84 
CT, TD 0.62 0.67 0.72 
CD 0.66 0.6 0.65 
CT 0.5 0.54 0.6 
TD 0.6 0.56 0.51 
AB, AC, BC 0.55 0.58 0.58 
AB 0.47 0.47 0.56 

Figure 6. Predictive accuracy of various subsets of item-to-
items transitions (LDA classifier, average of 100 train-and-
test repetitions) 

Combining the First and Second Slices 
Rather than looking at each of the individual time slices 
(i.e., “Initial”, “Middle”, “Final”), in our final analysis we 
looked instead at the first two-thirds of the trial. In other 
words, we combined the first two slices. The children’s 
average item-to-item transition profile for the first two-
thirds of the trial is shown in Figure 6. Their average 
looking-times at the different items over the first two-thirds 
of the trial is shown in Figure 7.  

 

Figure 6. Average number of item-to-item transitions after 
two-thirds of the trial. The key transitions CT and CD are 
highlighted. (SEM error bars) 

 

Figure 7. Average item looking times after two-thirds of the 
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trial. The key items, the Target (T) and the Semantic 
Distractor (D), are highlighted. (SEM error bars) 

Transitions 
or items 

After 2/3 
of the trial 

CT, CD 0.76 
T, D 0.82 

 

Table 2. Prediction accuracy (LDA analysis over 100 train-
and-test runs) for the key item-to-item transitions, CT and 
CD, and the key items, T and D. 
 
Our prediction about how a child would answer a given 
problem can, therefore, be based on combining the 
information in Table 2 with the graphs in Figures 6 or 7. For 
example, if after two-thirds of the trial a child has 
transitioned significantly more from C to the Target (T) than 
from C to the Semantic Distractor (D) (Figure 6), we can 
say with a probability of 0.76 (Table 2) that he/she will 
answer the problem correctly. If, on the other hand, after 
two-thirds of the trial, the child has transitioned significantly 
more between C and the Semantic Distractor than between 
C and the Target item, then we can say with a probability of 
0.76 that he/she will answer the problem incorrectly. 

The same holds for item looking times. If, after two 
thirds of the trial, the child has looked at the Target item (T) 
significantly longer than the Semantic Distractor (D) (Figure 
7), then we can say, with a probability of 0.82 (Table 2) that 
he/she will answer the problem correctly. And, as before, if 
the child has looked significantly longer at D than at T over 
the course of the first two-thirds of the trial, the probability 
of answering the problem incorrectly is 0.82. 

Discussion and Conclusion 
This goal of this paper has been to explore the temporal 
dynamics of analogy making in children. Specifically, we 
examined the question of just how much the patterns of 
item-to-item gaze transitions could tell us about whether or 
not the child would give the correct answer to an analogy 
problem.  

It turns out that very early, in the first third of a given 
trial, the predictive accuracy of particular patterns of 
transitions is well above chance. By two-thirds of the way 
through the trial (Table 2), prediction accuracy rises to 
around 80%. And by the last third of the trial, we can 
predict with almost 90% accuracy how the child will 
respond based on these item-to-item gaze transitions (and 
also, as we have shown, on their looking times at the items 
themselves).  

The techniques that we have used to classify children’s 
performance on A:B::C:D analogy problems based on their 
profiles of looking times or their number of item-to-item 
saccades give us a better understanding of the temporal 
dynamics of the children’s decision process. While it is true 
that the analyses in this paper apply to a specific kind of 
analogy problem — the A:B::C:? paradigm — there is no 

reason to believe that this kind of analysis could not be used 
in broader, more ecological analogy-making contexts. More 
than anything, these preliminary results paper argue strongly 
for the use of eye-tracking methodology to study the 
temporal dynamics of analogy making, allowing us to better 
understand how the solving of (or the failure to solve) an 
analogy problem unfolds over time.  

In this paper we have seen  just how rich and informative 
this kind of analysis of analogy making can be. 
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