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1. Introduction: The state of the affairs

Oft-cited studies have shown that infants, children, and adults can extract
word-like units (hereafter: words) from an artificial language in which
these units have been concatenated without any phonological or prosodic
markers (e.g., Saffran, Newport, and Aslin 1996). This attests to the fact
that listeners are able to exploit the statistical information available in lan-
guage. More precisely, boundaries between words could be found through
the computation of transitional probabilities (hereafter: TPs; Aslin, Saffran,
and Newport 1998). Participants would exploit the fact that, on average,
the TPs between word internal syllables are stronger than the TPs between
syllables spanning word boundaries!. The idea that word segmentation of
artificial languages attests to the computation of TPs is taken as a founda-
tional principle in most papers in the domain.

Although statistical structure is the only source of information made
available in the experimental studies mentioned above, it is commonly
thought that word segmentation of natural languages also relies on other
cues. The role of phonological and prosodic features, such as lexical stress
placement, on word discovery is the best documented (e.g., Creel, Tanenhaus,
and Aslin 2006; Curtin, Mintz, and Christiansen 2005; Thiessen and Saffran
2007). Some of these cues (e.g., the pauses) are certainly universal, gestalt-like
cues for the formation of perceptual units, and even cues that are seemingly
language-specific could be more universal than once thought (Berent and
Lennertz 2010; Endress and Hauser 2010, Yoshida, Iversen, Patel, Mazuka,
Nito, Gervain, and Werker 2010). In addition to acoustical cues, a second

1. In keeping with the prevalent view, only the syllabic level will be considered.
However, it is worth stressing that statistics computed at the level of phonemes
could be also, and even more relevant to find word boundaries (e.g., Hockema
2006). All the proposals of this chapter could be applied at the phonemic level

as well.
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potential source of information (hereafter coined as “contextual informa-
tion”) is provided by the known words surrounding the to-be-discovered
new words. To borrow an example given by Dahan and Brent (1999): “If
look is recognized as a familiar unit in the utterance Lookhere! then look
will tend to be segmented out and the remaining contiguous stretch, here,
will be inferred as a new unit” (p. 165). Various experimental evidence of
this phenomenon has been reported (Bortfeld, Morgan, Golinkoff, and
Rathbun 2005; Cunillera, Camara, Laine, and Rodriguez-Fornells 2010;
Dahan and Brent 1999; Perruchet and Tillmann 2010).

The view that statistical computations are complemented by the exploi-
tation of acoustical cues and contextual information is quite consensual
(c.g., Aslin et al. 1998; Christiansen, Allen, and Seidenberg 1998; Gomez
2007; Seidenberg and MacDonald 1999; Thiessen and Saffran 2003). There
are some disagreements, however, regarding how statistical computations
combine with other cues, and notably with prosodic or phonological infor-
mation2. The action of different cues can be thought of as being mediated
by independent processes, which would operate in parallel. Statistical
computations would be blind to the perceptual properties of the material.
This is the view advocated by Shukla, Nespor, and Mehler (2007), at least
with regard to prosody. The authors suggest that TP computations (or
other forms of statistical computations) over syllabic representations of
speech rely on encapsulated, automatic processes, which proceed irrespec-
tive of prosodic break-points. Prosody would act subsequently as a filter,
suppressing possible word-like units that straddle two prosodic constituents.
Another possibility is that statistical learning is “guided” by perceptual
factors. It has long been claimed that the exploitation of statistical regular-
ities needs to be constrained by external factors. The acoustical properties
of the speech flow could serve as such constraints (e.g., Gomez 2007;
Onnis, Monaghan, Chater, and Richmond 2005; Saffran 2002; Seidenberg
and MacDonald 1999). Still another view is that statistical computations
would be performed on representations that embed prosodic or phonological

2. To the best of our knowledge, the role of contextual information in the dis-
covery of new words has never been considered jointly with the role of statis-
tical computation. A TP, for instance, is a value inherent to a pair of syllables,
which does not depend on whether the local context in which this pair of
syllables appears is known by the learner. As asserted by Dahan and Brent
(1999), “transitional-probability computations do not take into account the
segmentation points in previous utterances; in other words, having isolated
some words does not help in isolating other words or even the same words

later on” (p. 166).
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information. Curtin et al. (2005), for instance, suggested that stressed and
unstressed syllables with the same segmental content could be considered
as different primitives for the computation of TPs.

Our starting point is that the lack of any principled constraints regard-
ing the interplay of statistical computations with the other factors that
have been shown to influence word extraction in natural languages comes
from the conceptual indeterminacy of the notion of statistical computation
itself. To begin with, what is meant exactly by computation in this context
is not clearly defined. Some authors may have in mind the type of formal
computations that a statistician would do in the same situation (the main
difference being that human learners would perform them unconsciously),
whereas others may prefer to think that learners approximate statistics
through the progressive tuning of associative links on the model of neural
networks. However, whatever the preferred option, the same caveat re-
mains: The notion of statistical computations remains underdetermined,
as a superimposed piece in the architecture of the mind.

2. Our thesis

The statement above could prompt us to delve into the notion of statistical
computation, with the elaboration of a new integrative framework as an
ultimate objective. But do we actually need a new framework? Is it plausible
that word segmentation would require a mode of learning that, despite its
claimed importance and pervasiveness, would have been undetected after
the overwhelming amount of research devoted to learning processes during
so many decades?

In a nutshell, our thesis is that the phenomena currently encompassed
under the label of “statistical learning” are nothing else that the end-product
of ubiquitous associative learning processes and moreover, that the asso-
ciative tradition in fact provides the basic architecture for a much more
powerful integrative framework than provided by the recent literature on
word segmentation and language acquisition.

Such a thesis may look paradoxical. Associative learning may sound
like an outdated, old-fashioned concept, which would have lost much of
its relevance for language since Chomsky’s (1959) famous commentary
on Skinner’s Verbal Behavior. Statistical learning, by contrast, seemingly
provides a flourishing framework, and there is some irony to replace a new
and promising concept by an older, and apparently worn-out one.
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An immediate objection to our proposal could be that an associative
framework is a priori ill-suited because it would be unable to account for
the learning of TPs in the first place. Going against this objection, we will
show in the next section (Section 3) that it has been demonstrated for 40
years or so that conventional processes of associative learning make learners
sensitive to TPs and even to more complex measures of statistical associa-
tion. Of major interest is that researchers, far from referring to some un-
specified computational abilities to account for this sensitivity, have provided
interpretations relying on simple psychological processes. Section 4 will
show that endorsing an associative view does not change only our under-
standing of the way human learners exploit the statistical structure of the
input to extract the words: An associative view naturally accounts for the
action of the other factors that have been shown to be influential on word
segmentation, namely the presence of acoustical cues and contextual infor-
mation. Moreover, as we will argue in Section 5, the mechanisms involved
in the exploitation of statistical regularities, when considered in a dynamic
perspective, give to the other sources of information an influence that
would be far weaker if they were considered in isolation. To summarize,
our claim is that trading the recent statistical learning view for the older
associative tradition allows a dynamic integration of phenomena that
otherwise would require an array of limited-scope and ad-hoc processes.

3. Accounting for the sensitivity to statistical regularities

3.1. Which statistics?

Before examining how associative principles account for the human sensi-
tivity to statistical regularities, one needs to make clear the type of statistics
that is involved here, and notably, to assess whether the current focus on
TPs is actually warranted. For the sake of simplicity, let us consider the
case of two successive events, A and X. Table 1 displays a standard 2 x 2
contingency matrix between the two events.

A first index of relationship is given by a, which represents the number
of AX pairs. For somewhat obvious reasons, the pure co-occurrence fre-
quency is quite limited as an indicator of the strength of the relationships
between two events. The TP, which is the probability that A be followed
by X and can be computed as TP(XJA) = a/(a + b), indisputably provides
a more relevant measure. Considering co-occurrence frequency and TP may
lead to opposite conclusions about the strength of an association. For
instance, “ED” is a more frequent bigram than “QU” in written English,
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Table 1. A contingency matrix: “a” stands for the number of AX sequences, “b”
for the number of occurrences of A not followed by X, “c” for the
number of occurrences of X not preceded by A, and “d” for the number
of events comprising neither A nor X. X can be read as any contexts
from which X is absent (this is the usual case in the conditioning domain),
or alternatively, as an identified event or class of events (this is the usual
case in the word segmentation literature), and likewise for A.

e2
X X
A a b
el —
A c d

hence suggesting that “E” is more strongly associated with “D” than “Q”
with “U”; However, “Q” is much more predictive of “U” than “E” is
predictive of “D” (“E” is more often followed with “R” or “S” than with
“D)”; Source: Wikipedia, letter frequency). Aslin et al. (1998) provided the
first demonstration in the word segmentation domain that humans, and
more precisely 8-month-old infants, are sensitive to TPs when the raw
co-occurrence frequency has been controlled.

However, TP as such provides only a part of the information about
relationships between A and X. To assess whether A is a useful cue for
the occurrence of X, the probability of X in the presence of A should be
compared with the probability of X in the absence of A. If, for instance,
there are better or more salient predictors of X, it may be adaptive to
ignore A and to focus on more relevant events, irrespective of whether A
carries some predictive information on the occurrence of X when it is
considered in isolation. The resulting statistic is Delta P, which stands
as: Delta P = a/(a + b) — ¢/(c + d). In a classical paper, Rescorla (1968)
demonstrated that rats were not only sensitive to TPs (rather than raw
frequencies), but also to Delta P, and this result has been confirmed and
generalized to many other species in subsequent studies.

It is worthwhile to note that neither TP nor Delta P are complete mea-
sures of associations, because both are limited to assess the forward relations
between A and X (i.e., the probability that X follows A). The strength of
an association may also be related to the backward relationships (i.e., the
probability that A precedes X). Backward TP, denoted as TP’, can be
computed as: TP'(A[X) = a/(a + ¢), and likewise, Delta P’ can be com-
puted as: Delta P’ = a/(a + c) — b/(b + d). Relying on forward or back-
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ward relations may, again, lead to opposite conclusions. For instance, in
the bigram “QU®, the forward TP is nearly 1, whereas the backward TP
is very low, because “U” can be preceded by most other letters of the
alphabet. Perruchet and Desaulty (2008) showed that adult participants
were able to learn the words from an artificial language when the only
available cues were the backward TPs. This ability was confirmed by
Pelluchi, Hay, and Saffran (2009) in 8-month-old infants.

It makes sense to conceive that the tightness of the association between
A and X depends on both forward and backward relationships. Inter-
estingly, Pearson r, commonly called “rg” with dichotomous data, can
be expressed as the geometric mean of forward and backward Delta Ps
(Perruchet and Peereman 2004), and written as:

re =v/af(a+b) - c/(c+d)).(af(a+c) - b/(b+d))

Note that alternative measures of association (such as %2 and mutual
information) also assess bidirectional relations. A few studies suggest that
learners could be sensitive to bidirectional measures of association, such
as Pearson r (Perruchet and Peereman 2004) and mutual information

(Swingley 2005)3.

3.2. Associative interpretations

Up to now, whereas our initial objective was to account for the behavioral
sensitivity to forward TPs through simple associative mechanisms, we

3. As an aside, this discovery has implications in the debate surrounding the
question of the relative weight different factors may play in language acquisi-
tion. Indeed, Yang (2004) has questioned that statistics could play a substantial
role, based on analyses of child-directed corpuses showing that even an optimal
exploitation of (forward) TPs has nearly negligible usefulness in extracting the
words from natural language. His estimations may have been underestimated,
however. Swingley (1999) considered bidirectional relations, and when his
analyses were restricted to the words that occurred five or more times in the
corpus, more than 60% of the extracted units were words (i.e., accuracy score),
and less than 40% of actual words were not extracted (i.e., completeness score).
These values clearly undermine the a priori argument that statistical informa-
tion would be too impoverished to be useful in word learning, and, although
this does not prove that infants actually use this information, it would seem
somewhat ill-adaptive that a source of information that is both useful (Swingley
1999) and easily exploitable by learners including infants (e.g., Saffran et al.
1996), would be neglected.
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have seemingly moved in the wrong direction. Indeed, the statistics to
which human learners are sensitive are in fact much more complex than
forward TPs*. From a computational standpoint, the increase in com-
plexity is indeed unquestionable: As it can be seen above, the formula for
(forward) TPs is included as a small initial component in the formula for
ro. We intend to show now that sensitivity to complex statistical measures
such as r¢ (and a fortiori to simpler measures) can in fact be accounted for
by very simple mechanisms.

Let us consider again the 2 x 2 contingency table above. To recap,
claiming that performance does not only depend on the frequency of
co-occurrence means that with a fixed, performance also depends on b
(increasing b decreases the forward TP), on ¢ (increasing ¢ decreases the
backward TP), or on both b and ¢ (increasing b and ¢ decreases the corre-
lation). In other terms, for a fixed number of AX pairs, the probability of
creating an association between A and X depends on the number of A
andfor X events that are perceived in other contexts. Overall, the larger
the number of A and/or X events perceived in other contexts, the more
difficult is the formation of the AX chunk. We propose below two comple-
mentary accounts for this outcome, an attention-based account and an
interference-based account, both relying on associative learning principles.

3.3. An attention-based account

A problem in referring to the associative learning tradition is that every-
one having heard about the effects of repetition and extinction, and
knowing concepts such as memory strength, decay and interference, may
believe to master the basic tenets of this approach. These notions are
indeed important. However, there are also other essential notions that are
often neglected, with the role played by attentional factors certainly being
the main one. Indeed, a fundamental principle is that the formation of any
associative links between two elements depends on the learner’s joint
attention to those elements. This principle obviously holds for complex
and supervised forms of learning (any teacher presumably attempts to
capture students’ attention), but for the most simple and implicit forms of

4. Note that learners’ ability to exploit backward TPs as well as forward TPs is
no longer compatible with the prediction-based logic of Simple Recurrent
Networks (SRNs), which are the most used computational models to simulate
sequential learning. Because relying on SRNs for forward TPs and other
mechanisms for backward TPs would lack parsimony, this pattern of results
suggests that the SRNs are not the most appropriate models in this context.
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learning as well (e.g., Hsiao and Reber 1998; Logan 1988; Mackintosh
1975; Pacton and Perruchet 2008). Unsurprisingly, the word segmentation
domain does not make exception (Toro, Sinnett, and Soto-Faraco 2005).

Note that conceiving attention as a condition for the formation of an
association between two events is not a late and surreptitious addition
from cognitive researchers to the conventional associative view. A study
reported in a book published in 1932 by Thorndike (who may hardly be
suspected of cognitive penchant) illustrates the point. We report this study
with some details’, because it also enlightens what is meant exactly by
“attention” in this context.

Thorndike gave learners 254 word-number pairs. Half of the partici-
pants were asked to hear the words and numbers without paying special
attention to them, while the other half were asked to pay as close attention
as they could do to the materials. In a first test, participants were pre-
sented with a word and asked to supply its associated number in the train-
ing list. Results revealed that subjects who actively attended to the list
outperformed those who were told to remain passive, but the recall score
of passive subjects was largely above chance, nevertheless. More impor-
tantly, in a second test, the participants were presented with a number
and asked to supply the word that began the next pair in the training list.
In fact, unbeknown to the participants, some word-number pairs were
so placed in the training series that a particular word always followed a
particular number. Recall scores were at chance on the second test, even
for the attentive group (for recent, conceptually similar findings, see Pacton
and Perruchet 2008).

For Thorndike, these results exemplify a condition for associative
learning that he coined as the principle of belonging. The property of belong-
ingness refers to as whether events are perceived as going together, without
a logical or causal link between the events of concern being required in
any way. The intended meaning is that incoming information is naturally
divided into a succession of units, and that a necessary condition for the
creation of an associative link is that the to-be-associated events are per-
ceived as belonging to a same unit. If a list is perceived as a succession of
word-number pairs, associations between the (final) number of a pair and
the (initial) word of the next pair are not learned, whatever the “objective”
contiguity of the two events, and whatever the amount of attention
devoted to the task. The principle of belonging usefully specifies the claim

5. Based on the report given by Postman (1962). We thank David Shanks for
having drawn our attention to this work and made it available on his website.
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that attention is necessary for learning. Certainly, some quantitative level
of orientation towards the to-be-learned materials is needed, but the
amount of attention learners naturally pay to their environment, without
special intentional effort and concentration, seems to be sufficient, as
exemplified in the “passive” group of Thorndike (1932). The critical issue
is the qualitative content of the fleeting attentional focus. A condition for
the establishment of stable associations between two events is the percep-
tion of these events within a single attentional chunk.

As an aside, learning dependency on attention is essential to the ex-
planatory power of an associative viewS. Indeed, one of the recurrent
objections against the relevance of associative processes for language
acquisition is the idea that the number of possible associations between
the elements displayed in the input is so large that an explanation based on
the exploitation of statistical regularities would be doomed to failure due to
combinatorial explosion (e.g., Pinker 1984). This objection essentially re-
flects a misrepresentation of the laws of associative learning, because it
is known for long that the possibility of formation of new associations
depends on a number of constraints. However, the most pervasive of
these constraints is certainly those stemming from the need of attention:
Attention serves as a natural filter to avoid combinatorial explosion. Inter-
estingly, this filter does not act as a blind mechanism that would operate a
random selection among the possible candidates for the creation of new
associations. Indeed, attention is naturally oriented towards events that
have high chance of being relevant in the current context, due to the
intrinsic properties of these events (e.g., attention is captured by novelty,
and novel events are presumably those that need to be integrated in new
associative networks) and to the efficiency of social cues, even in infants
(e.g., Wu and Kirkham 2010).

Coming back to the concern of this chapter, how may attention account
for the behavioral sensitivity to statistical structure? The classical literature
on animal conditioning has provided some responses (e.g., Mackintosh
1975; Pearce and Hall 1980). We do not intend to enter into the intricacies
of the debates surrounding this issue. Rather, we present here a simplistic,
general sketch, in the hope of making clear the gist of attention-based

6. Paradoxically, considerable effort has been devoted to demonstrate the possi-
bility of learning without attention or awareness of the to-be-learned relation-
ships, presumably driven by the idea that relaxing learning from the constraints
inherent to limited attentional resources seemingly extends its power and field

of application. Arguably, the exact opposite is true.
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theories. Referring again to the terminology used in the 2 x 2 contingency
table above, it is obvious that the attention devoted to A does not only
depend on the number of AX pairs (a), but more generally on the overall
number of A events (a + b). Indeed, the amount of attention devoted to
a given event is known to be inversely related to its frequency, because
repetitions induce habituation. As a consequence, increasing b (assuming
a fixed) necessarily decreases the amount of attention devoted to A, and
hence the probability for A and X to be perceived in a single attentional
chunk. This accounts for the sensitivity to forward TPs. It suffices to
switch round A and X (and, as a way of consequence, b and ¢) in the
reasoning above to account for the sensitivity to backward TPs. Those
permutations are perfectly consistent with our knowledge about the role
of attention, given that in this account A and X play a symmetrical role
(i.e., the formation of an associative link depends on the joint attention
to both events). Of course, accounting for bidirectional measures of asso-
ciation such as a Pearson r naturally follows.

3.4. An interference-based account

In the reasoning above, the only envisioned consequence of increasing the
number of b (and/or c) in Table 1 bears on the raw frequency of A (and/or
X): Increasing frequency of an event entails some attentional deficit for
this event. However, the matter is a little more complex. In fact, increasing -
the number of 4 (and/or ¢) in Table 1 also increases the number of poten-
tial associations of A (and/or X) with one or several other event(s). For
example, if (a) is the sequence gati and (b) gafo and gamu, the presence
of the latter events make that ga is now associated with three different
syllables, #i, fo, and mu. This consideration does not invalidate the reason-
ing above and hence, an explanation based on attention still holds: the
syllable ga may receive a larger amount of attention if ga is only played
in gati than if ga also appears in gafo or gamu, all simply because ga turns
out to be less frequent in the former than in the latter case. However,
another phenomenon may combine with the modulation of attention,
namely the generation of interference.

We refer here to nothing else than the classical paradigm of inter-
ference, such as described in any psychology textbooks: People learn a first
list of pairs (usually coined as AB) and then a second list of pairs that
bears relation to the initial target pairs (AC). Learning AC has a more
detrimental influence on the retrieval of AB than learning a list of un-
related items (e.g., DE). In keeping with this phenomenon, the memory
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for gati will be impaired by the presentation of gafo or gamu, with regard
to a situation where ga would be always followed by #. This effect directly
accounts for the behavioral sensitivity to forward TPs. Because inter-
ference also occurs backwards (the memory for gati would be impaired
by the presentation of foti or muti), the processes of interference also
account for the behavioral sensitivity to backward TPs and, by way of
generalization, to bidirectional measures of association.

Any explanations relying on simple and general principles to account
for complex phenomena are often questioned for their power by those
who find ad-hoc modules or mechanisms more attractive. Fortunately,
implementing these simple accounts into computational models allows to
address directly this concern. PARSER (Perruchet and Vinter 1998) is a
computational model that is devised to discover words from a non-
segmented speech flow without involving any other principles or processes
than those belonging to the associative tradition. Based on the phenomenon
that, in humans, attentional coding of the ingoing information naturally
segments the material into disjunctive parts, the model is provided online
with a succession of candidate units, some of them relevant to the structure
of the language and others irrelevant. The relevant units emerge through
a selection process based on forgetting. Crucially, forgetting is the end-
product of both decay and interference.

Decay is implemented as a linear decrement of the weight of the candi-
date units across the training session. If forgetting was only due to decay,
PARSER would be only sensitive to the raw frequency of co-occurrences
(i.e., a in Table 1): The candidate units resisting to forgetting would be
all simply those that occur the more frequently in the speech flow. Inter-
ference allows the model to be sensitive to much more sophisticated
measures of cohesiveness. Let us consider two artificial languages, one
(L1) in which gati would be a word, and a second language (L2) in which
gati would occur as a part-word (i.e., at least one word would end by ga
and at least one other word would begin by #). It is of course possible that
gati occurs as frequently in L1 as in L2 (as in the Aslin et al.’s 1998
design), hence making a decay process inefficient to discover that gati is a
word in L1 but not in L2. The point is that in L2, ga will be necessarily
followed by other syllables, hence making possible the creation of other
candidate units, such as gafo or gamu, which generate interference with
gati. As a consequence of interference, gati should normally disappear
from the lexicon of a learner trained with L2, by contrast with a learner
trained with L1, for whom interference would be null or reduced. These
processes should account for the model’s sensitivity to forward TPs. As
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for the attention-based model described above, the role of the two to-be-
associated events can be switched, hence accounting for backward TPs
and bidirectional measures of associations.

Data modelization fully confirmed these predictions (e.g., Perruchet
and Peereman 2004). Whereas some critics of PARSER doubted that
such a simple model would be sensitive to more than raw co-occurrence
frequencies (e.g., Hunt and Aslin 2001), this achievement demonstrates
that very elementary associative principles are powerful enough to account
for the behavioral sensitivity to sophisticated statistics.

To resume our main point up to now: The concepts evolved in the con-
text of the literature on associative learning and memory are sufficient to
account for the behavioral sensitivity to measures of associations that
include the standard TPs, but also much more sophisticated and powerful
statistical measures. Of course, this does not rule out the idea that human
learners compute TPs or other statistics, as the prevalent view contends.
However, there is no need for such a postulate: Behavioral sensitivity to
these measures can be understood alternatively as a by-product of a few
ubiquitous processes, which are at the core of the associative tradition.

4. Integrating other sources of information

As recalled in the introductory section, acoustical cues in the speech flow
and contextual information are also exploited in the word segmentation of
natural languages. Insofar as the exploitation of statistical structure is
attributed to ad-hoc computational abilities, as in the mainstream tradition,
the role played by these factors appears as superimposed to statistical
computation, without principled constraints to predict whether and how
the multiple factors could interact. Qur thesis is that once the vague
notion of “statistical computation” has been traded for well-known, speci-
fied mechanisms of associative learning and memory, a unified, integrative
interpretation arises naturally.

Let us consider again the contingency matrix in Table 1. The core con-
dition for the formation of an association between A and X, or in other
words the formation of the chunk AX, is the learner’s joint attention to
A and X. In the prior section, we have examined how pure distributional
factors (i.e., the occurrence of A and/or X in other contexts) can modulate
the amount of attention devoted to these events and the pattern of inter-
ference, hence accounting for the sensitivity to the statistical structure.
However, it is obvious that the chance for A and X to belong to a same
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attentional chunk at the outset of training also depends on a number of
factors, and notably on prosodic and phonological factors.

Let us assume that the sequence AX appears in one of the three follow-
ing conditions (these conditions are freely inspired from Shukla et al.

2007):

(1) [S1-S2-83-A-X-86-87-S8-59-510] [S1-S2-83-A- ...
(2) [S1-S2-83-54-85-S6-S7-S8-A-X] [S1-52-83-84- ...
(3) [X-S2-83-84-85-56-57-58-589-A] [X-52-83-54- . ..

where Sx are different syllables (their number conveys no other informa-
tion than the fact they are different), and square brackets mark intona-
tional phrases, that is, a set of syllables bounded by natural break-points
in speech. For instance, “] [’ may be a short pause in the speech flow.
From a purely statistical standpoint, the relation between A and X is the
same in all three cases. If one endorses the view that statistical computa-
tions are performed by the listeners, there is no reason to think that these
computations would differ between the three conditions, and hence, any
difference between conditions will be taken as attesting to the action of
other processes. By contrast, if the apparent results of statistical computa-
tions are taken into account by the action of ubiquitous processes of asso-
ciative learning and memory as proposed above, the predictions that can
be put forth are straightforward. In (1), AX is included within an intona-
tional phrase, so it is possible for AX to be perceived within an attentional
chunk. This is not necessary however: Ten syllables surely exceed the
range of an attentional percept, and it is possible that spontaneous pro-
cesses of chunking lead to introduce a subjective boundary between A
and X. The probability for A and X to be separated under condition (2)
is certainly far smaller, due to the fact that the pair AX is limited on the
right by a natural break-point. By contrast, the probability for A and X to
be perceived in a single attentional chunk is nearly null under condition
(3), given that they are separated by a natural break-point. Therefore
an associative view predicts that discovering AX will be possible in (1),
optimal in (2) because the edge effect maximizes the probability for AX
to be perceived within a single percept, and nearly impossible in (3),
because there is no chance for AX to be perceived as an attentional unit.
These predictions are direct consequences of the Thorndike’s principle of
belonging. Interestingly, these predictions are clearly confirmed by the
results provided by Shukla et al. (2007; see also Seidl and Johnson 2006,

for related data on infants).
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The effect of contextual information of the speech flow on the discovery
of new words can be easily accounted for within the very same framework.
Indeed, attentional chunks do not overlap. In the Thorndike’s (1932) experi-
ment outlined above, if wordl-numberl is a unit and word2-number2
is the following unit, numberl-word2 cannot be also perceived as a unit.
As a consequence, the element following a known chunk is naturally
perceived as the beginning of a new chunk. Let us consider the two follow-

ing conditions:
(1) S1-S2-S3-A-X-S6-S7-...
(2) S1S2S3-A-X-S6S7- ...

where the deletion of hyphens in (2) is intended to mean that “S15283”
and “S6S7” are known words, instead of being perceived as sequences of
independent syllables. The probability of perceiving AX as a single percept
is obviously stronger under condition (2) than condition (1), and hence
again, although a computational view would consider the two situations
as similar, the predictions of an associative framework are straight-
forward: AX should be easier to learn under condition (2) than under
condition (1), as found in empirical studies (e.g., Bortfeld et al. 2005;
Cunillera et al. 2010).

To resume, in an associative view, the effects of statistical structure,
acoustical cues, and contextual information, cannot be separated. All of
them are aimed at modifying the probability that the to-be-related events
(A and X in Table 1, which may be, for instance, the syllables composing
a word in real world settings) are perceived within a single attentional
unit, to serve as raw material to the action of associative processes.

5. Towards a dynamic view

5.1. A general outline

Up to now, only general principles from the associative tradition have
been involved. To the best of our knowledge, their application to the
word segmentation issue is novel, as well as the demonstration that simple
interference processes may account for the sensitivity to TPs and more
complex measures of association. However, we did not introduce any new
postulates or concepts. By contrast, the proposal that follows relies on a
principle that, although in no way contradictory to the laws of associative
learning and memory, has not been exploited yet in this approach. This
principle posits that among the conditions susceptible to focus attention
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on a set of components — or in other words, to fulfill the Thorndike’s prin-
ciple of belonging — is the fact that these components have been perceived
as a chunk in earlier processing episodes.

If the earlier processing episodes have been so frequent that a long-
Jasting representational unit has been created, the above principle is trivial:
Everyone would agree that a familiar word or object is perceived as a
whole in adults. The new point here is that the phenomenon occurs at a
much smaller scale, for instance during the few seconds or minutes follow-
ing a single episode. Although the literature on priming could provide at
least indirect evidence supporting this idea, more direct demonstration
have been brought out in the domain of object perception (e.g., Scholl
2001). Objects are often defined as the product of gestalt-like grouping
principles, presumably innate, such as the principles of continuation or
common fate. It is also largely acknowledged that long-term familiarity
with objects leads to process their features as a whole. However, it has
been shown also that even a recent and sporadic experience with a novel
shape is sufficient to facilitate its processing as a unitary whole upon sub-
sequent occurrences (e.g., Zemel, Behrmann, Mozer, and Bavelier 2002).
When applied to the language domain, this kind of phenomena lies at the
root of a dynamic approach to word segmentation.

How does this principle work? Let us assume that a given sequence, say
gati, has been perceived for the first time within a single attentional chunk
due to its acoustical properties, for instance because it was displayed at the
end of an intonational phrase. It is highly unlikely that this single presen-
tation would be sufficient to create gati as a definitive lexical unit, and
it is not ascertain that gafi will appear in subsequent occurrences in so
favorable conditions. Let us suppose that the subsequent occurrence of
gati occurs within the speech flow without any acoustical markers. If
“statistical learning” is conceived of as statistical computations, there is
no reason for gati to be processed differently from any comparable
sequence of two syllables. In our framework, by contrast, gati will be spe-
cifically strengthened, because provisional internal representations now
guide learner’s attention as a substitute to external cues.

The very same reasoning holds for the action of contextual information.
We referred in the introduction to the Dahan and Brent’s (1999) example:
If look is a word of the language, then here will be perceived as a new unit
when hearing “Lookhere!”. Our claim is that the same is true if look is a
provisional, short-lived chunk. Suppose, for instance, that a child knowing
neither look nor here is told “Look! Lookhere!”. Because the first occur-
rence of look will be presumably processed as a (provisional) unit due to



134  Pierre Perruchet and Bénédicte Poulin-Charronnat

the prosodic markers, “lookhere”, instead of being possibly perceived as a
single unit, will be correctly segmented, with the beneficial consequences
of both strengthening look and creating here.

What the prior examples illustrate is that a given unit does not need to
be perceived in acoustically or contextually favorable conditions on each
of its occurrences to acquire a stable internal representation: Once this
unit has been perceived as such, it will be naturally strengthened on the
near subsequent occurrences whatever its perceptual salience, due to the
fact that even short-lived representational units capture attention. Word
segmentation, in this framework, appears as the end-result of a dynamical
organization. Initially, words (or parts of words) may be perceived as
subjective units, due to their acoustical properties or to contextual infor-
mation, which have been shown to be specially salient in child-directed
speech; Then these units are strengthened by the action of associative pro-
cesses, because the nascent and short-lived representational units generated
by earlier experiences create themselves the condition for their own
strengthening, namely their processing as a single attentional percept.
This phenomenon is all the more adaptive given that analyses of natural
language corpuses have shown that the probability of encountering a
word that has just been met is strong in the near future, then decreases
when time elapses (e.g., Anderson and Schooler 1991).

5.2. Empirical and computational evidence

This framework allows to draw original predictions. If the processing of
acoustical and contextual information is independent from statistical com-
putations, the effect of statistical, acoustical, and contextual information
should be roughly additive (assuming no ceiling effects). In the framework
outlined above, the various sources of information have clearly interactive
effects. For instance, minor and sporadic acoustical factors providing a
positive cue for word discovery may have a strong effect. Also, if prosodic
factors prevent any possibility for two syllables of being perceived in a
same attentional focus (as in Condition (3) of the above example, where
constituents are on each side of a prosodic boundary), no association will
be created, irrespective of the strength of the relation that a statistician
could calculate.

These predictions have been tested in a recent study (Perruchet and
Tillmann 2010). The experimental situation was quite similar to the situa-
tion introduced by Saffran and collaborators (e.g., Saffran et al. 1996).
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Participants had to listen to an artificial language composed of six tri-
syllabic artificial words, randomly concatenated without any pauses. The
main difference with regard to the standard situation was that the Initial
Word Likeness (IWL) of three of the six artificial words (hereafter, the
biased words) was manipulated. IWL refers to the probability of a new
sound sequence to be considered as a word, due to its acoustical properties
(Bailey and Hahn 2001). For one group of participants (IWL+), the
biased words, when heard in a continuous speech stream, were spontane-
ously perceived as words more often than part-words, whereas the relation
was reversed for the second group of participants (IWL—).

Participants from both groups were presented with two successive two-
alternative forced choice tests (a word and a part-word) and had to select
the syllable set forming a word in the previously heard syllable stream.
The first test occurred after a very limited exposure to the language. Un-
surprisingly, performance for the biased words was better in the Group
IWL+ than in the Group IWL—, due to the effects of acoustical factors
(Figure 1, Initial conditions, Black bars). The second test occurred at the
end of the experiment, as usual. Two opposite predictions were possible. If
one posits that statistical computations are independent from the effect of
acoustical factors, then the improvement in performance should be the
same in both groups, hence generating additive effects. By contrast, if one
posits that the initial biases in favor of some chunks are exploited by asso-
ciative mechanisms following the dynamic organization outlined above,
then there should be a positive interaction. Positively biased words should
be learned better than negatively biased words. Results clearly supported
the second hypothesis (Figure 1, the four Black bars in the top panel).

The other three words of the language were unbiased, which means
that, on average, the IWL of these words and the IWL of the part-words
that are generated by the concatenation of these words did not differ. The
unbiased words, although identical with regard to their IWL and their
statistical properties were learned more quickly in the Group IWL+ than
in the Group IWL— (Figure 1, four Grey bars in the top panel), attesting
that participants were able to exploit their growing knowledge of the
biased words to guide the discovery of unbiased words.

To resume, Perruchet and Tillmann’s (2010) paradigm allowed to inves-
tigate the joint influences of three factors on the discovery of new word-
like units in a continuous artificial speech stream: the statistical structure
of the ongoing input, the initial word likeness of parts of the speech flow,
and the contextual information provided by the earlier emergence of other
word-like units. Results showed that these sources of information have
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Figure 1. Proportion of correct responses for the initial and final tests, as a func-

tion of Groups, for biased and unbiased items. IWL stands for Initial
Word Likeness, and designates the probability for a new sound sequence
to be considered as a word of the language due to its intrinsic properties,
before any training. The biased items were positively biased in the
Group IWL+, and negatively biased in the Group IWL—. Unbiased
items were identical for the two groups. The top panel shows the data
collected on adult humans, and the bottom pane! shows the simulations
with PARSER (adapted from Perruchet and Tillmann 2010).
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strong and interactive influences on word discovery, a5 clearly anticipated
in our framework. To assess the quality of fit in 5 quantitative way, the
data were simulated with PARSER (Perruchet and Vinter 1998). PARSER
has been introduced above to illustrate how interference makes learners
sensitive to statistics, but one crucial aspect was passed over in silence.
Indeed, the model implements the principle that Perception is dynamically
guided by the emerging representational units.

Although the role of acoustical factors was neg implemented in the
original version, doing so is straightforward. In the simulations, the initial
selection of the candidate units was biased in such g way that instead of
being randomly drawn within a given length range, the candidate units
were selected (within the same range) as a functiop of their relative IWL,
which was previously assessed in human participants, When the standard
parameters used in Perruchet and Vinter (1998) were applied, ceiling
effects were observed. When forgetting was Progressively increased until
ceiling effects disappeared in all conditions, the Pattern of results obtained
by PARSER reproduced the main effects observed for human participants,
as reported in Figure 1 bottom panel. Learning for biased items was better
for the Group IWL+ than for the Group IWL—, even though taking
performance in the first test as a baseline controlled for the direct effect
of IWL on word/part-word selection, and this difference transferred to
the unbiased items. The fact that PARSER was successful in generating
the pattern observed in human participants Without implementing any
ad-hoc algorithmic changes is worthy of note.

6. Discussion

The starting point of this chapter was the conceptua] indeterminacy of the
notion of “statistical computation”, which is usually invoked to account
for the human sensitivity to the statistical structure of the environment,
including the language. We showed that behaviora] sensitivity to statistical
structures has been evidenced long ago in the context of research on con-
ditioning in animals, and has been interpreted as the by-product of basic
associative learning principles. At the core of these interpretations is the
ubiquitous necessity for two events to be created ag 5 long-lasting repre-
sentational unit to be perceived within a single attentional chunk in the
first place, a phenomenon already described as the “principle of belong-
il'lg” by Thorndike (1932). We argued that putting associative learning
principles as the primary cause for the behavioral sensitivity to statistical
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structures has the unique advantage of also accounting for the action of
the other factors that have been shown to be influential on word segmen-
tation, especially the presence of acoustical cues and contextual infor-
mation. Finally, we have shown that an associative framework, when
complemented with the idea that even a fleeting, short-lived representation
of a set of features as a unit shapes further perception, opens to a dynamic
interpretation of word segmentation, in which the contributing factors
exhibit overadditive interactions. This view has received some experimen-
tal and computational support (Perruchet and Tillmann 2010).

Although our approach is critical towards the prevalent account of
statistical learning, it is worth noting that we have no reservation with
regards to the current empirical studies in the domain and moreover, we
fully endorse the view that statistical learning plays a much more substan-
tial role in language acquisition than once thought. In this regard, our
approach stands at the exact opposite of another critical vision, emphasiz-
ing the need for completing statistical learning mechanisms with a symbolic
machinery (e.g., Endress, Dehaene-Lambert, and Mehler 2007; Endress and
Mehler 2009; Endress, Nespor, and Mehler 2009). In this view, the action of
any perceptual factor modulating the end-result of statistical computations
is referred to the action of specialized detectors. For instance, observing that
components located at the boundaries of a sequence are processed more
efficiently than components located in a middle position, the authors infer
the action of an “edge detector” coding this information in a symbolic
format. This symbolic information is then sent to other systems, including
mechanisms devoted to statistical computations, and acts as a constraint:
Any event situated at a boundary is taken as potentially more significant
than other events. To take an analogy in physics, it is like if to account for
the fact that ice melts at about 0 degrees Celsius, a “head detector” con-
tinuously monitors the temperature of the water, stores this information
in a propositional format, and when the temperature starts to warm above
the target value sends to another system in charge of the melting task a
message such as “The melting point has been reached”. This account is
obviously nonsensical in the physical domain, but half of a century of
prevalence of the cognitivist, information-processing view makes that
what we construe as its counterpart in cognitive sciences is not always per-
ceived as such.

Instead of adding a (symbolic) layer in the explanatory sketch, our
approach amounts to a withdrawal of a notion that has been recently pro-
posed, namely that idea that the mind performs statistical computations.
When the principle that the formation of a cognitive unit needs the initial
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processing of its components into a single attentional percept has been laid
down, the action of distributional factors as well as the action of other
variables guiding attention — such as edges — directly follows through direct
functional couplings.

The question of whether the principles exploited here for the word seg-
mentation issue can be extended to account for other aspects of language
acquisition stands beyond the scope of this chapter. This extension to
language could meet other approaches relying on similar principles such
as the emergentist theory developed by MacWhinney (e.g., MacWhinney
2010). Such an extension has also been proposed as a part of a general
model of the mind framed around the concept of self-organizing conscious-
ness (e.g., Perruchet 2005; Perruchet and Vinter 2002).
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