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Endress and Mehler (2009) reported that when adult subjects are exposed to an unseg-
mented artificial language composed from trisyllabic words such as ABX, YBC, and AZC, they
are unable to distinguish between these words and what they coined as the ‘‘phantom-
word’’ ABC in a subsequent test. This suggests that statistical learning generates knowledge
about the transitional probabilities (TPs) within each pair of syllables (AB, BC, and A� � �C),
which are common to words and phantom-words, but, crucially, does not lead to the extrac-
tion of genuine word-like units. This conclusion is definitely inconsistent with chunk-based
models of word segmentation, as confirmed by simulations run with the MDLChunker
(Robinet, Lemaire, & Gordon, 2011) and PARSER (Perruchet & Vinter, 1998), which success-
fully discover the words without computing TPs. Null results, however, can be due to multi-
ple causes, and notably, in the case of Endress and Mehler, to the reduced level of
intelligibility of their synthesized speech flow. In three experiments, we observed positive
results in conditions similar to Endress and Mehler after only 5 min of exposure to the
language, hence providing strong evidence that statistical information is sufficient to
extract word-like units.

� 2012 Elsevier Inc. All rights reserved.
Introduction

Seminal studies have shown that, after hearing an arti-
ficial language in which invented words have been concat-
enated without any phonological or prosodic markers,
infants (Saffran, Aslin, & Newport, 1996), children (Saffran,
Newport, Aslin, Tunick, & Barrueco, 1997), and adults (Saf-
fran, Newport, & Aslin, 1996) become more familiar with
the invented words of the language than with the part-
words straddling word boundaries. The statistical structure
being the only cue made available to the learners, this
achievement attests to the fact that listeners are able to ex-
ploit the statistical information available in the input, and
more precisely, the prevalent view is that this form of
learning proceeds through the computation of transitional
probabilities (hereafter: TPs; Aslin, Saffran, & Newport,
. All rights reserved.

urgogne, LEAD/CNRS,

(P. Perruchet).
1998). Participants would exploit the fact that TPs between
word internal syllables are stronger than TPs between syl-
lables spanning word boundaries.
The role of statistical information in word segmentation

Since this earlier demonstration, the role of statistics in
word extraction has been keenly challenged. A part of the
debate stems from the a priori argument that statistical
information would be too impoverished to be useful in
word learning. For instance, Yang (2004) reported that
using TPs leads to a far from optimal segmentation of a
child-directed corpus of language: Precision was 41.6%,
meaning that more than half of the extracted units were
not words, and completeness was 23.3%, meaning that al-
most 80% of the actual words were not extracted.

Other authors have argued that many other sources of
information are available to infants. The role of phonolog-
ical and prosodic features, such as lexical stress placement,
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1 The term ‘‘statistical learning’’ sometimes refers to this specific
approach, and is taken as equivalent to ‘‘computations of transitional
probabilities’’. Hereafter, ‘‘statistical learning’’ is used as a theoretically
neutral label designating any form of exploitation of the statistical
structure of the input. The chunk-based models described in this paper
are construed as models of statistical learning, as those relying on the
computation of TPs.
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on word discovery has been well documented (e.g., Creel,
Tanenhaus, & Aslin, 2006; Curtin, Mintz, & Christiansen,
2005; Thiessen & Saffran, 2007). The question of how sta-
tistical and phonological or prosodic cues combine has
been investigated in experimental studies in which these
cues are either consistent or inconsistent with the word-
like units of a continuous speech flow (e.g., Creel et al.,
2006; Onnis, Monaghan, Chater, & Richmond, 2005; Shu-
kla, Nespor, & Mehler, 2007; Tyler, Perruchet, & Cutler,
2006). These studies have shown that performance in a
word-segmentation test improved with consistent cues
and strongly decreased (and potentially dropped at chance
level) with inconsistent cues. Other studies have explored
how these cues compete as function of age. Although Thi-
essen and Saffran (2003) reported a prevalence of statistics
over prosody in 6-month-old infants, Johnson and Jusczyk
(2001) reported that prosodic factors override statistics in
8-month-old infants.

Natural language acquisition also relies on the exploita-
tion of known words to discover new words. To borrow an
example given by Dahan and Brent (1999): ‘‘If look is recog-
nized as a familiar unit in the utterance Lookhere! then look
will tend to be segmented out and the remaining contiguous
stretch, here, will be inferred as a new unit’’ (p. 165). Dahan
and Brent (1999) and Perruchet and Tillmann (2010) pro-
vided experimental evidence of this phenomenon in adults,
and Bortfeld, Morgan, Golinkoff, and Rathbun (2005) dem-
onstrated the same capacity in 6-month-old infants. It has
been suggested that such lexically-driven segmentation
could progressively supersede cues during language devel-
opment (e.g., Mattys, White, & Melhorn, 2005, p. 493).

Although these studies admittedly reduce the relative
importance of statistical learning, they did not challenge
the ability of statistical learning processes to trigger
word-unit extraction when only statistical information is
available. In a recent paper, Endress and Mehler (2009)
went far beyond this earlier literature. They acknowledged
the capacity of learners to compute TPs, but, ‘‘surprisingly’’,
they wrote, ‘‘there is no evidence that TP-based computa-
tions lead to the extraction of word-candidates.’’ The avail-
able experimental evidence, they claimed, ‘‘does not imply
that the items with stronger TPs are represented as actual
word-like units, or even that they have been extracted.’’ (p.
352).

Endress and Mehler’s (2009) results

Endress and Mehler (2009) based their conclusion on a
set of ingeniously designed experiments in which partici-
pants were familiarized with a continuous language con-
taining trisyllabic words, as in the studies cited above, but
the words were generated from what the authors coined
as a ‘‘phantom-word’’, which was never presented in the
language. If the phantom-word is designated as ABC (with
each letter standing for a syllable), the heard words were
ABX, YBC, and AZC (with X, Y, and Z standing for invariant
syllables). For instance, participants heard tazepi, mizeRu,
and tanoRu, which were all derived from the (unheard)
phantom-word tazeRu. In this way, the phantom-words
had exactly the same TPs between their constituent
syllables (i.e., AB, BC, and A� � �C) than the trisyllabic words
composing the language. The reasoning was straightfor-
ward: If subjects have learned a word-like unit, that is some
acoustical word candidates that could be later associated as
a whole to a meaning, they should select words over phan-
tom-words when both are played in a subsequent forced-
choice test. However, if they only learned pairwise rela-
tions, they should be unable to distinguish between the ac-
tual words and the phantom-words.

The results indicate that participants failed to distinguish
between words and phantom-words. Chance performance
was observed in several experiments in which the number
of words and the length of the familiarization phase (from
5 to 40 min) were varied. To quote the authors: ‘‘Even when
collapsing all 161 participants who took part in the different
experiments, no preference for words to phantom-words
emerged (M = 51.2%, SD = 19.4%), t(160) = 0.8, p = .438)’’ (p.
358). In subsequent experiments, the authors made the
word structure perceptually salient, either by introducing
25-ms silent pauses between words or by lengthening the
last syllable of each word during the familiarization phase.
Subjects now chose words over phantom-words in subse-
quent forced-choice tests. According to the authors, these
findings demonstrate that ‘‘despite the general agreement
that TP-based computations are crucial for word-learning,
other cues seem to be required for actually extracting
word-like units.’’ (p. 359). In their view, extracting word-
like units requires the construction of positional memories,
which would be possible only when prosodic markers of
word boundaries are provided in the input.
Theoretical implications of Endress and Mehler’s (2009)
conclusion

Insofar as Endress and Mehler’s conclusion is taken for
granted, it should elicit major changes in the current con-
ceptions about the role of statistical learning in word seg-
mentation and language acquisition. We focus below on
their theoretical implications with regard to learning mod-
els. In the brief outline of the statistical approach above, we
have assumed that chunks are inferred from the discovery
of the boundaries, which are defined as the points where
the predictability of the next element is the lowest. Be-
cause the primary aim of computations is to insert word
boundaries within a continuous sequence, this view, which
is currently prevalent in the literature, is sometimes coined
as the bracketing approach1 (Goodsitt, Morgan, & Kuhl,
1993; Swingley, 2005). The consequences of Endress and
Mehler’s results for a bracketing approach are relatively lim-
ited. Indeed, Endress and Mehler do not put into question
the fact that learners compute TPs, which are at the core
of the bracketing approach. They only challenge the addi-
tional postulate according to which TP computations di-
rectly trigger word-like unit extraction.
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However, there is another view that, by opposition to
the bracketing approach, has been called the clustering or
chunking approach (Swingley, 2005). In this approach,
the sensitivity to TPs is nothing else that a by-product of
other processes. Instead of looking for units’ boundaries,
the general strategy shared by all the chunk-based models
(e.g., Brent & Cartwright, 1996; Frank, Goldwater, Griffiths,
& Tenenbaum, 2010; Perruchet & Vinter, 1998; Robinet
et al., 2011; Servan-Schreiber & Anderson, 1990) is that a
large number of potential chunks are built online, then se-
lected as a function of their relevance. The Endress and
Mehler’s conclusion, if valid, is in principle devastating
for chunk-based models, because, in a nutshell, Endress
and Mehler suggest that learners compute TPs without
extracting the words, whereas chunk-based models posit
that learners extract the words without computing TPs.
We now turn to a brief presentation of chunk-based mod-
els and their predictions for the Endress and Mehler’s task.

The chunk-based models

Although they share the same general objectives, cur-
rent chunk-based models follow one of two very different
strategies. For the sake of simplicity, we will consider be-
low the MDLChunker of Robinet et al. (2011) as represent-
ing the first strategy, and PARSER (Perruchet & Vinter,
1998) as representing the second strategy, although the
predictions for the current situation could certainly be
generalized beyond these specific models. For a more for-
mal presentation of the models, the reader is referred to
the original papers.

In the MDLChunker, the model creates exhaustively all
possible new chunks beginning with the shortest ones,
then examines whether the consequences of creating a gi-
ven chunk are positive or negative for the system. Let us
consider the sequence CABCRTPABCGAFABCLB. There is a
pattern of reoccurrence, namely ABC. If ABC is coded by
X, the representation of the sequence becomes shorter:
CXRTPXGAFXLB, but this length reduction is obtained at
the expense of storing somewhere a new code, ABC = X.
The question is to know whether creating the chunk ABC
leads to simplify the overall representation of the system,
including both the data (i.e., the sequence) and the codes.
The length of the data and the length of the codes typically
evolve in opposite directions, and therefore, assessing the
effect of creating a new chunk on the overall length of
the representation is not a trivial matter whenever the
data increases in length and complexity. As several other
models (Brent & Cartwright, 1996; Frank et al., 2010), the
MDLChunker uses a powerful mathematical algorithm,
known as the Minimum Description Length principle
(MDL, Rissanen, 1978), to solve this trade-off.

A major advantage of the MDLChunker over past MDL-
based models (e.g., Brent & Cartwright, 1996) is that it
works online. Let us assume that the model has just pro-
cessed CABCRTPA and now encounters B. The conse-
quences of creating AB as a new chunk are examined. If
creating a code for AB leads to a shorter representation of
the stored data, which is not overcompensated by the cost
of coding AB as a new unit, the code is definitely created,
otherwise the code is withdrawn. If AB has been chunked
during earlier steps when C is shown, the model may con-
sider creating ABC, hence ensuring the step-by-step forma-
tion of longer chunks.

Concerning PARSER (Perruchet & Vinter, 1998), the pri-
mary motivation is to account for human behavior in terms
of psychologically plausible processes. Based on the obser-
vation that, in humans, attentional coding of the ongoing
information naturally segments the material into disjunc-
tive parts, PARSER postulates that a sequence such as CAB-
CRTPABCGAFABCLB will be perceived as, say, CAB/C/RT/P/
AB/CGA/F/AB/CLB. Each of these randomly determined
fragments are created as provisional chunks as they appear
in the language. Clearly, some of them are relevant to the
structure of the language (here: AB) and all the others
are irrelevant. How does the model operate a selection
without calling to a sophisticated algorithm? In PARSER,
the fate of a new chunk does not depend on the conse-
quences of a retrospective recoding of stored information
as in the MDLChunker, but on the probability for the new
chunk to be encountered later. The relevant units emerge
through a selection process based on forgetting. Due to
both decay and interference, forgetting leads to the selec-
tion of the most cohesive parts among all parts generated
by the initial, presumably mostly irrelevant, chunking of
the material. For instance, CAB, once created as a provi-
sional unit, is doomed to quick forgetting, because it does
not reoccur later in the sequence. By contrast, AB has more
chance of surviving because it will be strengthened on its
subsequent occurrences. Once a new chunk has been cre-
ated, it plays the role of a new primitive, and hence it
can become the component of a longer chunk. For instance,
if AB is a new primitive, ABC can be created in a subse-
quent stage of learning (note that ABC could also have been
created by chance from the outset instead of AB). This al-
lows the system to build chunks whose components could
hardly be perceived in one attentional focus if perception
were driven only by the initial primitives in the corpus.

Chunk-based models’ predictions in Endress and Mehler’s task

Although Endress and Mehler results are, in principle,
incompatible with the main tenets of chunk-based models,
one needs to examine the actual predictions of these mod-
els to eliminate a possible drawback. Indeed, the languages
used by Endress and Mehler are somewhat atypical, be-
cause given that words were derived from phantom-
words, they were closer to each other than in earlier word
segmentation studies (e.g., each syllable occurred in two
different words). A possibility would be that chunk-based
models also fail to extract such words, as participants did
in Endress and Mehler’s study, or at least need very exten-
sive training to do so.

We performed a large set of simulations using the End-
ress and Mehler’s task with the MDLChunker (Robinet
et al., 2011) and PARSER (Perruchet & Vinter, 1998). A
point of debate in computational research is the selection
of parameter values. The MDLChunker has no free param-
eter, which is construed as a major advantage by its propo-
nents. In PARSER, the rates of decay and forgetting (and a
few other, minor parameters) may be tuned to comply
with the materials or the study population. The general
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strategy adopted in earlier studies (e.g., Frank et al., 2010;
Giroux & Rey, 2009; Perruchet & Peereman, 2004; Perru-
chet, Tyler, Galland, & Peereman, 2004) has been to first
apply the parameters used in the initial study (Perruchet
& Vinter, 1998), which often turn out to be well-fitted for
other objectives. All the subsequent simulations have been
performed with these standard parameters.

Participants in Endress and Mehler’s experiments were
exposed to 75 repetitions of each word (this amounts
approximately to 5 min of speech flow) or more. We ex-
plored the effect of 5, 10, 15, 25, 35, 55, 75, and 100 repe-
titions on models’ performance. Fig. 1 reports the mean
performance of the models in the Endress and Mehler’s
forced-choice test. Because the test used in these experi-
ments also comprised part-words, that is trisyllabic units
spanning word boundaries, the scores were computed for
both word/phantom-word and word/part-word pairs. A re-
sponse was generated for each pair, based on the ratio be-
tween the weights of the word and the nonword in the
internal lexicon of the models. If the weight of the word
was stronger than the weight of the nonword, then the
score was set to 1. If both weights were equal, the score
was set to 0.5, and if the weight of the word was smaller
than the weight of the nonword, the score was set to 0.
Each point from the curves was averaged over 100 runs,
with each run using a different language (with regard to
word order). All simulations were performed with U-learn
(Perruchet, Robinet, & Lemaire, submitted for publication),
which is freely available to the following URL: http://lead-
serv.u-bourgogne.fr/~perruchet/.

PARSER performed above chance, t(99) = 15.59, p < .001,
with only five repetitions of each word, while the MDLC-
hunker was still at chance. However, the MDLChunker’s
predictions were above chance, t(99) = 3.79, p < .001, with
only ten repetitions. With 25 repetitions, the performances
of the two models were nearly identical, then the MDLC-
hunker moved toward asymptote slightly quicker than
Fig. 1. Mean performances of MDLChunker (Robinet et al., 2011) and PARSER
phantom-words and words vs. part-words) as a function of the number of repeti
2). Error bars represent standard errors.
PARSER. These observations hold for both word/phan-
tom-word and word/part-word pairs, which do not sub-
stantially differ.

A more detailed analysis of these predictions and their
implications for the models is postponed to the general
discussion. For our current concern, the major conclusion
is that irrespective of their specific instantiation, chunk-
based models extracted the words of the Endress and Meh-
ler’s language without any difficulty. Both models reached
asymptotic performances with the shortest amount of
exposure used in Endress and Mehler’s experiments. Still
more strikingly, PARSER performed above chance with
word/phantom-word pairs with only five repetitions of
each word during familiarization, whereas participants in
Endress and Mehler’s Experiment 1d failed to do so with
600 repetitions. Neither PARSER nor the MDLChunker are
aimed at fitting the time course of human learning pre-
cisely, and it has been observed from the outset that mod-
els tend to outperform human participants (e.g., Perruchet
& Vinter, 1998). But even taking this observation into ac-
count, the discrepancy between models’ predictions and
the Endress and Mehler’s data is so drastic that it raises a
major challenge for chunk-based models. Before speculat-
ing further on how to deal with this challenge, however,
we have to raise a preliminary question: Is the failure of
the Endress and Mehler’s participants to select (heard)
words over (unheard) phantom-words a reliable outcome?

The present study

The following experiments were aimed at replicating
Endress and Mehler’s (2009)’s study. We focused on their
first experiment, in which subjects were familiarized with
a speech flow comprising no prosodic marker of word
boundaries during 5 min (i.e., the shorter duration of expo-
sure explored by the authors). To anticipate, Experiment 1
revealed that participants selected words over phantom-
(Perruchet and Vinter, 1998) on the two types of test trials (words vs.
tions. Note that the two curves for the MDLChunker overlap (see Footnote
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words in those conditions, in striking contrast with End-
ress and Mehler’s results. Experiments 2 and 3 were in-
tended to examine whether procedural differences could
account for the discrepancy between our results and those
of Endress and Mehler.
Experiment 1

Method

Participants
A total of 40 undergraduate students from the Univer-

sity Paris-Descartes, France, participated in the experiment
in partial fulfillment of a course requirement. All subjects
were native French speakers. Participants were randomly
assigned to one of the two experimental groups (Language
1, N = 20; Language 2, N = 20).
Materials
To control for possible preferences for some acoustic

utterances, we created two counterbalanced versions of
the artificial language. Language 1 (including words and
phantom-words) was strictly identical to the language
used in Endress and Mehler’s (2009) Experiment 1 (Appen-
dix A1). For Language 2, a complete switching between
words and phantom-words was not possible, given there
are more words than phantom-words, but, as a close
approximation, the two phantom-words from Language 1
served as words in Language 2, while two randomly se-
lected words from Language 1 served as phantom-words
in Language 2 (Appendix A2).

As in Endress and Mehler, the speech was synthesized
through the MBROLA (Multiband Resynthesis Overlap
Add) speech synthesizer (http://tcts.fpms.ac.be/synthesis/;
Dutoit, Pagel, Pierret, Bataille, & Van Der Vrecken, 1996)
with the fr2 diphone database. The mean syllable duration
was 232 ms. The resulting WAV files were modified using
CoolEdit. Progressive fades in and out were applied to the
first and last 5 s of each part of stream to avoid word bound-
ary cues. The speech stream was played through head-
phones connected to a Macintosh computer.
Procedure
Participants first completed a pre-training phase con-

sisting of 10 trials. Two syllables were played on each trial,
one of which was ‘so’. The task was to indicate whether ‘so’
was in first or second location by pressing on one of two
predefined keys. This was intended to familiarize the par-
ticipants with the final forced-choice test.

Then participants were told that they would be exposed
to an imaginary language. They were told to carefully listen
to the speech flow, mimicking the attitude they may have
when they are listening to music. Each of the six words oc-
curred 75 times. The words were pseudo-randomly or-
dered for each participant, without immediate repetition.
This phase of familiarization to the language lasted about
5 min. At the end, participants were told that they would
be presented with pairs of items, and that they would have
to judge, for each pair, which item was a word of the
imaginary language. The two trisyllabic items of each pair
were separated by a 500-ms silent interval.

In Endress and Mehler, word/phantom-word pairs were
mixed with word/part-word pairs during the test. We rea-
soned that adding word/part-word pairs could bias the
choices on the word/phantom-word pairs, which were of
primary interest. Indeed, selecting the words in the
word/part-word pairs is relatively easy, as attested by the
high rate of success in Endress and Mehler’s experiments.
Let us assume that a word/part-word pair and a word/
phantom-word pair involving the same word occur in close
temporal succession. Participants may correctly select the
word in the first pair, then continuing to select the word
in the second pair only for the sake of response consis-
tency. Such sequential effects would be unable to account
for participants’ failure to discriminate words from phan-
tom-words in Endress and Mehler’s experiment, given
these effects should enhance the selection of the word in
the word/phantom-word pairs. However, we wanted to
avoid that positive results, if observed, could be ascribed
to sequential effects. As a consequence, only word/phan-
tom-word pairs were played. Given that there were two
phantom-words, only two words out of the six were used
during the test, to avoid any possibility of gaining informa-
tion from the relative frequency of test items. The two
words selected for Language 1 served as phantom-words
for Language 2 and vice versa, so that participants ascribed
to both languages were exposed to exactly the same test
pairs, with the word/phantom-word status of the items
being reversed. There were four word/phantom-word pairs
(Appendix A). Each test pair was presented twice in differ-
ent item orders, resulting in eight pairs of items, the order
of which was randomized for each subject.

Results and discussion

Participants showed a significant preference for words
over phantom-words, M = 63.12, SD = 24.01, t(39) = 2.93,
p = .001, Cohen’s d = 0.546. This finding strikingly departs
from Endress and Mehler’s results. Given that only one of
our languages was borrowed from Endress and Mehler, a
possibility is that this effect comes from the counterbal-
anced, new version of the language. Our results do not lend
support to this possibility: Language 1 and Language 2 led
to the very same mean performance, M = 63.12, SD = 27.05
and M = 63.12, SD = 21.26, respectively.

A possible explanation for this departure could stem
from the differences regarding the instructions given to
participants. Participants in Endress and Mehler’s experi-
ments ‘‘were told that they would listen to a monologue
in an unknown language (‘‘Martian’’), and were instructed
to try to find the words in the monologue.’’ (Endress &
Mehler, 2009; p. 355). By contrast, we used incidental
learning instructions in Experiment 1. We did not borrow
Endress and Mehler’s intentional instructions all simply
for the sake of compliance with the most common prac-
tice: In an overwhelming proportion of studies on word
segmentation in adults, any attempt to analyze the speech
flow is tacitly or explicitly discouraged (e.g., Perruchet &
Tillmann, 2010; Saffran et al., 1996; Toro, Sinnett, & Soto-
Faraco, 2005). Although the motivation for using incidental

http://tcts.fpms.ac.be/synthesis/
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learning instructions as a standard is rarely made explicit,
we guess that this practice naturally derives from the pri-
mary interest of the contributors to this literature, which is
the formation of the lexicon in infants. Inferring how in-
fants process a continuous speech flow is largely a matter
of speculation, but, it seems relatively safe to posit that in-
fants do ⁄not⁄ process the speech flow as adults do when
they are intentionally searching for the structure of the
language.

Using intentional learning instructions may have
influenced subjects’ performance in Endress and Mehler
(2009)’s experiments. We are unaware of any systematic
comparison between incidental and intentional instruc-
tions in word-segmentation research, but in the related lit-
erature on implicit learning, instructions asking
participants to search for rules is known to have detrimental
consequences with regards to more incidental instructions
(Reber, 1976), especially when the task is complex (Reber,
Kassin, Lewis, & Cantor, 1980). In a word-segmentation par-
adigm, a possibility is that participants under intentional
learning instructions look for bigram statistics, storing a syl-
lable and its successor in working memory and tracking
whether the next occurrence of the same syllable will have
the same or a different successor. This or another hypothe-
sis-testing operation may prevent the online attentional
processing of sequential information, which may be
required for the creation of longer chunks of syllables.

Experiment 2 was aimed at exploring the role of
instructions in word segmentation, by directly comparing
the effects of incidental and intentional instructions in
independent groups of subjects. Our hypothesis was that
intentional learning instructions might have prevented
word formation in the participants of Endress and Mehler’s
experiments.

Experiment 2

Method

Participants
Forty undergraduate students at the University of

Bourgogne in Dijon, France, participated in the experiment
in partial fulfillment of a course requirement. All were na-
tive French speakers. Participants were randomly assigned
to incidental or intentional instructions, and within each
condition, to one of two counterbalanced languages (with
N = 10 in each cell).

Materials and procedure
For the incidental group, the pre-training phase, the

familiarization phase and the test phase were exactly iden-
tical to those of Experiment 1. For the intentional group,
only the instructions differed. These instructions were as
similar as possible to the instructions reported in Endress
and Mehler (2009). Before the familiarization phase, partic-
ipants were told that they would have to listen to a mono-
logue in an unknown language (in ‘‘Martian’’) and were
instructed to try to find the words in the monologue. At test,
participants had to choose between the two items of each
pair the one that was more likely to be a Martian word.
Results and discussion

Participants again preferred words over phantom-words
under incidental instructions, M = 62.50 SD = 19.45,
t(19) = 2.87, p = .010, Cohen’s d = 0.643, hence replicating
Experiment 1. However, contrarily to our prediction, the
effect was also observed under intentional instructions,
M = 63.13, SD = 24.83, t(19) = 2.36; p = .029, Cohen’s
d = 0.538. An ANOVA was carried out with Instructions
(incidental, intentional) and Language (language 1, lan-
guage 2) as between-subject variables. There was no main
effect of Instructions, F(1,36) = 0.008, p = .931. Likewise,
there was no main effect of Language, F(1,36) = 0.61,
p = .439, and no significant Instructions � Language interac-
tion, F(1,36) = 0.008, p = 931.

Given that participants from the incidental and inten-
tional groups were exposed to the same set of test pairs,
their pattern of responses can be directly compared. We
computed the correlation over the eight pairs of test items
between the two conditions. This correlation was positive
and significant, r(6) = .739, p = .036, indicating that partic-
ipants from the two groups showed similar patterns of re-
sponses to the test pairs.

These results have contrasting implications. On the one
hand, they strengthen the general contention that consid-
ering statistical structure is sufficient to extract word-like
units, by replicating the results from Experiment 1 on inci-
dental instructions, and generalizing the conclusion to
intentional instructions. But on the other hand, they rule
out our hypothesis that the failure of participants in End-
ress and Mehler (2009) to show a preference for words
over phantom-words would be due to the use of inten-
tional instructions. In fact, manipulating the instructions
had no effect, irrespective of whether mean performances
or response patterns were considered. These results are
interesting on their own, given that there was no earlier
comparison between incidental and intentional instruc-
tions in earlier word-segmentation research. However,
for our present concern, this raises a new question: Is there
one or several other procedural differences that could ac-
count for the discrepancy between our results and those
of Endress and Mehler?

Excluding contextual elements that are typically not re-
ported in experimental papers (e.g., the gender of the
experimenter), the only discernable difference is related
to the list of test pairs. Experiments 1 and 2 involved only
word/phantom-word pairs, whereas in Endress and Meh-
ler, word/phantom-word pairs were mixed with a larger
number of word/part-word pairs. As detailed in the Meth-
od section of Experiment 1, removing the word/part-word
pairs from the test was intended to prevent sequential ef-
fects that could have artificially enhanced the selection of
the word in the word/phantom-word pairs. However, it
cannot be excluded that mixing word/phantom-word pairs
with word/part-word pairs could impair the performance
on word/phantom-word pairs, if only because of increased
interference and complexity. To examine this possibility,
Experiment 3 is a replication of Experiment 1, except that
the test involved both word/phantom-word and word/
part-word pairs, as in Endress and Mehler.
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Experiment 3

Method

Participants
A total of 28 undergraduate students from the Univer-

sity of Bourgogne in Dijon, France, participated in the
experiment in partial fulfillment of a course requirement.
All subjects were native French speakers. Participants were
randomly assigned to one of two experimental groups
(Language 1, N = 14; Language 2, N = 14).

Materials and procedure
The pre-training and the familiarization phases of

Experiment 3 were identical to those of Experiment 1.
However, during the test phase, there were six word/phan-
tom-word pairs, and 12 word/part-word pairs, as in End-
ress and Mehler. If all words are represented as ABC, part-
words were either of the BCA (six part-words) or CAB (six
part-words) types. Each test pair was presented twice in
different item orders, resulting in 36 pairs the order of
which was randomized for each subject (Appendix B).

Results and discussion

The main results are shown in Fig. 2. Unsurprisingly,
participants showed a significant preference for words
over part-words, M = 71.57, SD = 20.79, t(27) = 5.49,
p < .001, Cohen’s d = 1.04. There was no difference accord-
ing to whether BCA or CAB part-word types were consid-
ered, t(27) = 0.49, p = .631, and there was no difference
between Languages, t(26) = 1.43, p = .165.

Despite the presence of intermixed test pairs including
a part-word, participants again preferred words over phan-
tom-words, M = 59.82, SD = 17.72, t(27) = 2.93, p = .007,
Cohen’s d = 0.554. As in the prior experiments, the scores
were closely similar for the two counterbalanced lan-
guages, M = 60.12, SD = 18.25 vs. M = 59.52, SD = 17.86,
t(26) = 0.09, p = .931.

When the scores in the two kinds of test pairs are di-
rectly compared, it appears that participants were signifi-
cantly better at selecting the words when they were
paired with the part-words than when they were paired
with the phantom-words, t(13) = 3.82, p = .002. In terms
Fig. 2. Proportion of correct responses on the two types of test trials
(words vs. phantom-words and words vs. part-words) in Experiment 3.
Error bars represent standard errors.
of Cohen’s d, the size of the former effect falls within the
‘‘large’’ range, while the latter falls within the ‘‘medium’’
range in our three experiments. Discussion of this result
is postponed to the next section.
General discussion

In three experiments, participants showed a significant
preference for words over phantom-words after only 5 min
of exposure to the language. Overall, the effect appears
remarkably stable, with the rate of correct responses on
eight independent groups (considering the two counter-
balanced languages separately) ranging from 59.52% to
66.25% (with chance set to 50%). Before discussing the the-
oretical implications of these results, we will deal with two
preliminary issues in turn. First, how can the differences
with the Endress and Mehler’s results be explained? Sec-
ond, is the preference for phantom-words over part-words
observed in Experiment 3 consistent with chunk-based
models of word segmentation?
Accounting for the differences with Endress and Mehler, 2009
results

Our results strikingly depart from those of Endress and
Mehler, who saw chance performance in several experi-
ments, even though some of them involved a much longer
duration of exposure to the language (until 40 min in
Experiment 1d). We have examined and rejected two pos-
sible explanations for the failure of Endress and Mehler to
get the same effect. A first possibility is that Endress and
Mehler’s results were due to the use of rather unusual
intentional learning instructions. This hypothesis was
clearly ruled out in Experiment 2, which showed a signifi-
cant preference for words over phantom-words under the
very same intentional instructions as used by Endress
and Mehler. Experiment 3 led us to reject a second possi-
bility, according to which performance on the word/phan-
tom-word pairs depended on whether the test also
includes word/part-word pairs. A reliable effect was still
present when the test comprised the same word/part-
word pairs as in Endress and Mehler. An additional possi-
bility would be that the acoustical properties of words
and phantom-words have biased the Endress and Mehler’s
results, which were based on a unique language for each
experiment. In all the experiments above, we used two
versions of the artificial language, with one version being
identical to the language of Endress and Mehler, and the
other being created by reversing words and phantom-
words. Performance on the two languages was nearly iden-
tical in each experiment, ruling out the presence of acous-
tical biases as a potential explanation of the departure.

At this juncture, after a careful scrutiny of the Endress
and Mehler’s procedure, the only remaining explanation
we envision for the discrepant results stems from the
observation that both sets of experiments involved (inevi-
tably) different samples of participants. Note that we get
the same results with students from our university (Exper-
iments 2 and 3), and with students from another university
(Experiment 1), who differed along several characteristics



2 It may be seen in Fig. 1 that for the MDLChunker, the curves
representing the predicted rate of correct responding in the word/
phantom-word pairs and in the word/part-word pairs are nearly superim-
posed. This reflects the fact that the MDLChunker creates virtually no part-
word. For PARSER, the two curves are dissociated in the first stages of
training, because PARSER creates a few part-words, which are removed
from the lexicon with subsequent exposure to the language. This difference
reflects the mode of chunk creation in the two models: Chunks are created
by the MDLChunker only if this creation has positive consequences on the
coding of stored data (a condition that part-words do not fulfilled), while in
PARSER, chunks are created on a random basis then subsequently selected
through decay and interference.
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(e.g., students from our university may have been exposed
to artificial languages over the few past years, whereas no
experiment of this type had been carried out in the other
university). This makes it very unlikely that our positive re-
sults are dependent on some idiosyncratic characteristics
of the studied samples. However, one point deserves par-
ticular attention. Although both Endress and Mehler and
ourselves used the same French diphone database to create
the synthesized languages, our experiments were carried
out with French participants, while Endress and Mehler
ran their experiments with Italian participants.

Endress and Mehler (2009) wrote: ‘‘Pilot tests [. . .]
showed that Italian native speakers find synthesized
speech with the fr2 voice more intelligible than speech
synthesized with the available Italian diphone databases’’
(Endress & Mehler, 2009, p. 354). This observation, how-
ever, does not tell much about the resulting level of intel-
ligibility. A reasonable hypothesis is that perceptual
discrimination of the speech flow is more difficult when
the diphone database used for language synthesis was
not extracted from the participants’ mother language, as
in Endress and Mehler, than when it was, as in our exper-
iments. If this hypothesis is correct, then the differences
between Endress and Mehler’s results and our results
should not be circumscribed to the word/phantom-word
pairs, but should extend to word/part-word pairs. In our
Experiment 3, which is the only experiment comprising
such pairs, participants who were exposed to the same lan-
guage as used in Endress and Mehler choose the words
over the part-words on 77.08% of the trials. The score in
Endress and Mehler’s Experiment 1a, which involves the
same duration of exposure to the same language, was
69.9%. Admittedly, the difference is not drastic, but there
is at least a numerical support for the idea that Italian par-
ticipants in Endress and Mehler may have experienced
some perceptual difficulties with the French database.

Why are part-words easier to reject than phantom-words?

When word/part-word pairs were introduced among
the test items in Experiment 3 for the sake of using the
same test lists as Endress and Mehler (2009), participants
were significantly better at selecting the words in these
pairs than in the word/phantom-word pairs. The same ef-
fect was obtained in all the experiments of Endress and
Mehler, who construed this part of their results as a proof
that ‘‘participants learn the TP-structure of the streams’’
(Endress & Mehler, p. 358). They based their reasoning
on the premise that the mean TP between each pair of syl-
lables was lower for the part-words than for the phantom-
words. This premise looks as sensible, given that phantom-
words were matched with the words in this regard. How-
ever, a close examination of the data suggests that the sup-
port this effect provides for TP computations could be less
compelling than Endress and Mehler contended. Given the
particularities of the Endress and Mehler’s materials, the
mean pairwise TPs computed on part-words and phan-
tom-words (or words) were in fact quite close one each
other. We obtained .41 and .50, respectively. Whether
detecting a so small difference is possible within 5 min of
exposure to the language and sufficient to generate a so
large and robust effect during the test is questionable.
Moreover, the predictions based on the exploitation of
TPs depend on the events that are considered for TP com-
putations. In the calculation above, only pairwise relations
were considered (i.e., B|A, C|B, and C|A for an ABC item), as
in Endress and Mehler. If second order conditionals were
taken into account (i.e., C|AB), the effect would be inverted.
Indeed, the transitional probability C|AB turns out to be
notably higher for the part-words (TP = .48) than for the
phantom-words (TP = 0), hence making the phantom-
words easier to reject than the part-words. Thus the sup-
port the observed result brought out for models based on
the computation of TPs is more apparent than real.

However, irrespective of the ability (or inability) of the
models relying on TP computations to account for it, this
result seemingly provides a strong challenge for chunk-
based models. As shown in the simulated data reported
in Fig. 1, both MDLChunker and PARSER failed to predict
the observed pattern: The mean performances of the mod-
els for the word/part-word pairs never exceeded those for
the word/phantom-word pairs, whatever the amount of
training.2 The reason is straightforward: The principles
underpinning these models prevent the formation of any
unit that has never been processed during the familiariza-
tion phase. Phantom-words have never been encountered,
while part-words have been encountered, although less fre-
quently than words. As a consequence, the rate of selection
of words when they are paired with phantom-words can
only be higher than when they are paired with part-words,
which stands in contradiction with the observed pattern. Is
there a way to reconcile chunk-based models with this par-
ticular result?

Addressing this issue gives us the opportunity to recall
that the primary objective of chunk-based models is to
reproduce the internal lexicon of the learner. They are
not aimed at describing how a learner having acquired a gi-
ven lexicon proceeds to select a response in a forced-choice
recognition task involving a word and another item. The
algorithm we have used in our simulations above to infer
a score from a mental lexicon is an oversimplification, be-
cause it does not take into account the characteristics of
the test items, like their frequency or the similarity of the
items within a pair, which may affect the recognition
scores while the lexicon is kept unchanged.

To illustrate, let us consider the test used in Experiment
3, which was borrowed from Endress and Mehler’s Exper-
iment 1. A given word was paired, on successive trials, with
two part-words (BCA or CAB) and one phantom-word. This
design entails that part-words occurred three times less of-
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ten than words and phantom-words across the 36 test tri-
als. A possibility is that phantom-words became more
familiar than part-words during the test, due to their high-
er frequency, hence making their discrimination with
words harder. Chunk-based models are in no way prepared
to deal with this kind of situation.

Let us assume that the same pattern of results would
persist after the frequency of part-words and phantom-
words played during the test has been controlled. A simple
thought experiment is sufficient to give evidence that no
strong conclusions could be drawn, nevertheless. Consider
a lexical decision task in which one would have to decide
whether the following items are English words: potention,
nalinten, and tentialdi. None are words, but it looks very
likely that rejecting potention would be more difficult
(maybe with a longer latency or an increased probability
of errors) than rejecting nalinten, and tentialdi. Now, poten-
tion is a ‘‘phantom-word’’ (composed from the real words
potential, intention, and position), which has likely never
been heard in the past, while nalinten and tentialdi are
part-words, which have high chance of having already
been heard (e.g., in ‘‘original intention’’ and ‘‘potential diver-
sion’’ respectively). Presumably, the relative difficulty of
distinguishing words from phantom-words should be re-
ferred to some well-known phenomena in the psychologi-
cal literature, notably the false recognition of unstudied
prototypes in Posner and Keele’s studies (e.g., 1970), or
the false recall or recognition of lures associated with the
studied items in the DRM tasks (Roediger & McDermott,
1995). Further studies are needed to clarify this issue. For
the present concern, however, these considerations are
sufficient to make the point that the differences observed
as a function of whether a word is paired with a phan-
tom-word or a part-word can hardly be conceived as a
challenge for chunk-based models.

As an aside, at this juncture, the reader may wonder
why the just mentioned explanation could not be applied
to the main results of Endress and Mehler, namely the indi-
stinctiveness of words and phantom-words for the partic-
ipants. We fully agree that in so far as phantom-words
are assimilated with the prototypes of word classes, a pro-
totype effect could account for the lack of preference for
the words themselves (the standard prototype effect
would even predict a preference for phantom-words over
words). This interpretation of the Endress and Mehler ‘s re-
sults would be fully compatible with a chunk-based ap-
proach. However, this leaves the question open: Why
would a prototype effect be stronger in Endress and Meh-
ler’s experiments than in our own study? Without any hint
for a response to this question, we suggest that the low le-
vel of perceptual discrimination of the speech flow in End-
ress and Mehler’s experiments remains the best hypothesis
to-date to account for their null results, as proposed in the
prior section.

The surprising power of statistical learning

Let us return now to the main result of the present ser-
ies of experiments, namely the preference for words over
phantom-words after a few minutes of exposure to the lan-
guage. It is worth stressing that our disagreement with
Endress and Mehler is related to their empirical findings,
not to the logic of their reasoning. On the contrary, we fully
acknowledge that the method they propose is a very inge-
nious way of teasing apart two opposite conceptions
regarding the exploitation of the statistical information
embedded in a speech flow. Endorsing their rational and
borrowing their methodology, we were able to demon-
strate that exposure to a speech flow comprising only sta-
tistical cues is sufficient to create word-like units. Training
with unsegmented speech results in the formation of
word-like units, rather than in a string of sounds linked
by TPs varying on a continuous dimension, or in a set of
fragments that does not map the actual constituents of
the language.

Some prior evidence for the same conclusion can be
found in the literature (Giroux & Rey, 2009; Graf Estes,
Evans, Alibali, & Saffran, 2007; Saffran & Graf Estes, 2006;
Saffran & Wilson, 2003). For instance, Graf Estes et al.
(2007, Exp 2) played to 17-month-old infants a continuous
language comprising four invented words, then introduced
an object-labeling task. Novel objects were paired either
with the invented words or with part-words. Infants
learned the labels in the former case, but not in the latter,
despite the fact that words and part-words were fre-
quency-balanced. These results are clearly consistent with
the hypothesis that statistical segmentation processes gen-
erate word-like units. However, critics may still argue that
words were built after the exposure to the artificial lan-
guage to cope with the object-labeling task. In this view,
the computation of TPs during the listening phase would
help subsequent word segmentation, but would not lead
to word extraction on its own. The findings reported in
the present paper provide certainly the most compelling
evidence to date for the view that statistical information
is sufficient to extract the words as functional units from
a continuous speech flow.

Needless to say, acknowledging the surprising power of
statistical learning does not imply that statistical structure
is the only (and even the main) source of information to be
exploited in word discovery. As detailed in Introduction, a
huge number of studies gives evidence for the contribution
of phonological, prosodic, and contextual cues (e.g., Creel
et al., 2006; Curtin et al., 2005; Dahan & Brent, 1999; John-
son & Jusczyk, 2001; Onnis et al., 2005; Thiessen & Saffran,
2007), which have proven to interact with statistical cues
(e.g., Perruchet & Tillmann, 2010; Shukla et al., 2007).
The Endress and Mehler’s (2009) study, which shows that
introducing pauses between words or lengthening the final
syllables of the words helps word segmentation, provides
additional supports to the role of prosodic factors. What
our study clearly demonstrates, however, is that in striking
contradiction to Endress and Mehler’s claims, prosodic
cues are in no way necessary to extract word-like units
from the speech flow.

A final note about word segmentation models

This paper was not aimed at ruling out a bracketing ap-
proach, in which words are inferred from the discovery of
the boundaries defined as the points where the predictabil-
ity of the next element is the lowest. In particular, we did
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not intend to rule out the idea that participants might have
computed TPs, although the observation that words were
preferred over phantom-words despite they were matched
with regards to the TP structure provides some challenge
for this view. Likewise, the analysis of Endress and Meh-
ler’s materials showed that the strong preference of words
over part-words, which was observed both in Endress and
Mehler’s experiments and in our Experiment 3, was far less
consistent with the TP structure than Endress and Mehler
claimed.3 However, providing compelling evidence against
the exploitation of TP structures would have required fur-
ther experimental manipulations.

Our primary motivation for examining the Endress and
Mehler’s results was their inconsistency with the chunk-
based models of statistical learning. These results indeed
suggested that learners compute TPs without extracting
the words, whereas chunk-based models posit that learn-
ers extract the words without computing TPs. A possible
account of Endress and Mehler’s results within a chunk-
based framework relied on the hypothesis that the partic-
ular structure of their languages could have made their
decomposition into words especially difficult, but our sim-
ulations with the MDLChunker (Robinet et al., 2011) and
PARSER (Perruchet & Vinter, 1998) showed that both mod-
els extracted the words quickly and efficiently in these
conditions. The data reported in the three experiments
above restore the viability of chunk-based models, which
was downsized by the Endress and Mehler’s apparent
counterevidence. More specifically, we argue below that
the simulations performed in the present study brings
added value to PARSER.

Why should PARSER be privileged over the MDLChun-
ker, given that both models made closely similar predic-
tions in our simulations (see Fig. 1)? Admittedly, our
contention does not stem from the relative ability of the
two models to extract chunks. As shown in earlier compar-
ative studies (Frank et al., 2010; Robinet et al., 2011) and
confirmed above, the predictions from the two models do
not substantially differ. But this is precisely this lack of dif-
ference, which makes PARSER performance remarkable. In-
deed, the MDLChunker uses powerful and specially
designed mathematical algorithms, which have a very
low psychological plausibility, unless assuming a very
smart cognitive unconscious. But the predictions of a
MDL model may be used as a benchmark against which
the efficiency of other, more plausible models, can be as-
sessed. Now, it turns out that, without any adjustment of
its parameters, PARSER, which relies on simple and ubiqui-
tous psychological mechanisms, performed as well as the
MDLChunker. As shown in Fig. 1, with a very small corpus,
PARSER even outperformed the MDLChunker.
3 We allude here to the analysis reported above comparing performances
in the word/part-word pairs and in the word/phantom-word pairs.
However, this analysis is endowed with more general implications. In fact,
words were consistently preferred over part-words even though the mean
pairwise TPs computed on words and part-words were much closer one
each other (.50 and .41, respectively) than in most comparable studies. This
casts some doubt on the fact that TP computations might have been
responsible for the selection of words over part-words in this specific
paradigm, and by way of generalization, in all prior studies on word
segmentation of artificial languages.
This achievement of PARSER is all the more worth not-
ing as the model has proven to be able to account for data
for which it was not a priori prepared. PARSER was initially
designed to account for Saffran, Newport et al.’s (1996) re-
sults, which are consistent with the mere exploitation of
raw frequencies. The model nevertheless turned out to be
able to reproduce the effect of TPs (Aslin et al., 1998; Perru-
chet & Pacton, 2006; Perruchet & Peereman, 2004). More-
over, while Aslin et al. only considered forward TPs,
subsequent studies (Pelucchi, Hay, & Saffran, 2009; Perru-
chet & Desaulty, 2008) showed that participants also relied
on backward TPs to segment a continuous speech flow.
Again, PARSER was able to reproduce the same outcome,
without any change or parametric adjustment with regard
to the initial model (Perruchet & Vinter, 1998). Moreover,
PARSER turned out to be able to predict the interaction be-
tween statistic and acoustic or contextual factors observed
in Perruchet and Tillmann (2010). The present study sug-
gests that the model performs as well as the MDLChunker,
which relies on a specially designed and powerful mathe-
matical algorithm. We hope that cumulative evidence
lending support to PARSER will provide a sufficient motiva-
tion to reconsider the current prevalence of explanations
based on the notion of TP computations in the field of word
segmentation.
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Appendix A: Materials used in Experiments 1 and 2
Group 1
Familiarization phase
 Test pairs
Words
 Words
 Phantom-words
Familiarization phase
 Test pairs
Words
 Words
 Phantom-words

tazepi
 tazepi
 tazeRu

mizeRu
 mikula
 tazeRu

tanoRu
 tazepi
 fekula

fekupi
 mikula
 fekula

mikula

fenola
Group 2
Familiarization phase
 Test pairs
tazeRu
 tazeRu
 tazepi

fezepi
 fekula
 tazepi

tanopi
 tazeRu
 mikula

mikuRu
 fekula
 mikula

fekula

minola
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Appendix B: Test pairs used in Experiment 3
Group 1
Word/Phantom-word trials
 Word/Part-word trials
Words
 Phantom-words
 Words
 Part-words (BCA)
 Words
 Part-words (CAB)
Word/Phantom-word trials
 Word/Part-word trials
Words
 Phantom-words
 Words
 Part-words (BCA)
 Words
 Part-words (CAB)

tazepi
 tazeRu
 tazepi
 zepimi
 tazepi
 pitano

mizeRu
 tazeRu
 mizeRu
 zeRufe
 mizeRu
 Rufeno

tanoRu
 tazeRu
 tanoRu
 noRumi
 tanoRu
 Rufeku

fekupi
 fekula
 fekupi
 kupita
 fekupi
 pimiku

mikula
 fekula
 mikula
 kulafe
 mikula
 lataze

fenola
 fekula
 fenola
 nolata
 fenola
 lamize
Group 2
Word/Phantom-word trials
 Word/Part-word trials
tazeRu
 tazepi
 tazeRu
 zeRufe
 tazeRu
 Rutano

fezepi
 tazepi
 fezepi
 zepimi
 fezepi
 pimino

tanopi
 tazepi
 tanopi
 nopife
 tanopi
 pimiku

mikuRu
 mikula
 mikuRu
 kuRuta
 mikuRu
 Rufeku

fekula
 mikula
 fekula
 kulami
 fekula
 lataze

minola
 mikula
 minola
 nolata
 minola
 lafeze
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