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Individuals of all ages extract structure from the sequences of patterns they encounter in their environ-
ment, an ability that is at the very heart of cognition. Exactly what underlies this ability has been the
subject of much debate over the years. A novel mechanism, implicit chunk recognition (ICR), is proposed
for sequence segmentation and chunk extraction. The mechanism relies on the recognition of previously
encountered subsequences (chunks) in the input rather than on the prediction of upcoming items in the
input sequence. A connectionist autoassociator model of ICR, truncated recursive autoassociative chunk
extractor (TRACX), is presented in which chunks are extracted by means of truncated recursion. The
performance and robustness of the model is demonstrated in a series of 9 simulations of empirical data,
covering a wide range of phenomena from the infant statistical learning and adult implicit learning
literatures, as well as 2 simulations demonstrating the model’s ability to generalize to new input and to
develop internal representations whose structure reflects that of the items in the input sequence. TRACX
outperforms PARSER (Perruchet & Vintner, 1998) and the simple recurrent network (SRN, Cleeremans
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presented exploring 8-month-olds’ use of backward transitional probabilities to segment auditory
sequences.
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Individuals of all ages extract structure from the sequences of
patterns they encounter in their environment, an ability that is at
the very heart of cognition. Exactly what underlies this ability has
been the subject of much debate over the years. One of the most

widely accepted proposed explanatory mechanisms is learning
based on prediction. The idea is that individuals are constantly
engaged in predicting upcoming patterns in their environment
based on previously encountered patterns. Learning, in this view,
is a process of gradually aligning these predictions with the out-
comes that actually occur. Prediction-driven learning is the cor-
nerstone of numerous computational models of sequence process-
ing and, in particular, underlies the very well known simple
recurrent network (SRN, Elman, 1990). In this article, we propose
an alternative mechanism, implicit chunk recognition (ICR), a
process that is based not on prediction but rather on the recognition
of previously (and frequently) encountered subsequences of pat-
terns (chunks).

This does not mean that prediction plays no role in sequence
processing or in cognition more generally. But it turns out that
prediction-driven models, in general, and the SRN, in particular,
cannot account for a number of recent results in infant statistical
learning (SL) and adult implicit learning (IL). This strongly sug-
gests that there must be some other processes underlying sequence
processing and chunk extraction. We have developed a connec-
tionist implementation of ICR, the truncated recursive autoasso-
ciative chunk extractor model (TRACX), which is able to handle
empirical data that are problematic for prediction-based models. In
addition, we show that TRACX accounts for a wide range of other
results in sequence segmentation and chunk extraction.
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Models of sequence processing and chunk extraction fall,
broadly speaking, into three categories: symbolic/hybrid models,
connectionist models, and normative statistical models. PARSER
(Perruchet & Vintner, 1998, 2002) is the best known model from
the first class, and the prediction-driven SRN (Cleeremans, 1993;
Cleeremans & McClelland, 1991; Elman, 1990; D. Servan-
Schreiber, Cleeremans, & McClelland, 1991) is the best known
from the second class. We examine both of these models in some
detail and compare their performance and architectures with that of
TRACX. We also include a succinct comparison of TRACX with
a number of Bayesian models discussed in Frank, Goldwater,
Griffiths, and Tenenbaum (2010).

In the remainder of this article, we illustrate the TRACX frame-
work by focusing on adult IL and infant SL, two domains that
involve sequence segmentation and chunk extraction. Perruchet
and Pacton (2006) suggested that although the former area tends to
emphasize recognition of remembered wordlike chunks and the
latter emphasizes prediction based on statistical distribution infor-
mation, these two historically distinct fields of enquiry may in fact
constitute two approaches to the same problem. They went on to
suggest that providing a unified framework for these two areas is
the major theoretical challenge facing researchers in both fields.
We suggest that the TRACX model, a recursive connectionist
autoassociator, not only provides a simple, parsimonious, unifying,
memory-based solution to the challenge posed by Perruchet and
Pacton (2006) but also provides a general, recognition-based con-
nectionist framework for chunk extraction from any sequence of
patterns.

We first examine the information that underlies chunk extrac-
tion in these two domains. People exploit multiple cues in word
segmentation (Christiansen, Allen, & Seidenberg, 1998; Cunillera,
Camara, Laine, & Rodriguez-Fornells, 2010; Perruchet & Tillman,
2010); therefore, a computational model of sequence segmentation
must be able to do likewise. We then review the existing compu-
tational models of sequence segmentation and chunk extraction,
notably SRN and PARSER, and suggest that when doing sequence
segmentation, these models differ fundamentally in their reliance
on prediction versus recognition/chunking. The TRACX model is
then introduced as a recognition-based connectionist model of
chunk extraction that can use multiple statistical cues to extract
and form chunks. We show that TRACX can successfully capture
performance on eight different studies of adult and infant sequence
segmentation, can scale up to large corpora, and can generalize
novel input in meaningful ways. Moreover, it succeeds in captur-
ing human performance when the SRN model and PARSER seem
to fail.

Adult IL

Shanks (2005, 2010) listed a number of diverse examples of
behaviors that might be considered to demonstrate IL. Tasks and
measures that show IL include artificial grammar learning (AGL,
Reber, 1967), faster responses in serial reaction time tasks (Destre-
becqz & Cleeremans, 2001), classical conditioning of eye blink
responses (Clark & Squire, 1998), unconscious position bias in a
qualitative judgment task (Nisbett & Wilson, 1977), and dynamic
process control tasks (Berry & Broadbent, 1984).

Furthermore, Cleeremans and Dienes (2008) emphasized three
key properties of IL: (a) that learning happens without intention or

effort, (b) that it happens without the participant’s awareness, and
(c) that the resulting knowledge is unconscious. IL research has
mainly focused on sequence segmentation tasks, in particular, the
original AGL task introduced by Reber (1967) and the serial
reaction time (SRT) task developed by Nissen and Bullemer
(1987). Both experimental paradigms afford the experimenter a
high degree of control because the type of stimuli and their
relations to each other can be precisely chosen.

Chunking in Adult IL

Perruchet and Pacteau (1990) presented convincing empirical
evidence that simple associative learning can drive the formation
of chunks and chunk-fragments in AGL. In a series of three
experiments, they showed that grammaticality judgments could be
based on an explicit knowledge of valid bigrams. They found that
participants who were shown only a list of valid bigrams rather
than full grammatical sentences containing these bigrams were
equally accurate at grammatically judgments. In other words, their
grammaticality judgments could have simply been based on the
recognition of the bigrams, a fact that was confirmed in the final
experiment that directly tested bigram recognition. Perruchet and
Pacteau concluded that chunk knowledge is explicit, a position
similar to that of Dulany, Carson, and Dewey (1984), who hypoth-
esized that AGL performance was attributable to participants’
possessing and consciously applying an incomplete set of micro-
rules. The TRACX model relies entirely on the recognition of
recurring chunks in the input stream while eschewing the need for
explicit awareness.

Finally, a recent study by Giroux and Rey (2009), whose results
are simulated in this article, provides evidence that when chunks
are learned, the subunits making up these chunks are forgotten
unless they are refreshed independently. This would imply that
chunks are encoded as atomic entities rather than as associations
between their constituent elements. This process, known as lexi-
calization, means that a chunk, once fully formed, is thereafter
treated as an indivisible word, causing any words within it to be
overlooked. For example, we fail to notice the words break and
fast in breakfast or cup and board in cupboard. Giroux and Rey
(2009) demonstrated this effect in an artificial grammar task.
Dahan and Brent (1999) and Perlman, Pothos, Edwards, and Tzel-
gov (2010) have reported similar results.

Evidence for the Use of Transitional Probabilities
(TPs) in Adult Sequence Segmentation

The TP between two syllables, X and Y, is the probability that
given one of the syllables, the other will also occur. They come in
two types: forward TPs and backward TPs. A concrete example,
with letter combinations in English and French, will serve to
illustrate the difference between them. Consider the bigram qu.
The forward TP between its two letters is the probability that given
a q in the first position, a u will follow. In English, this probability
is, for all intents and purposes, 1. The backward TP is the proba-
bility that given a u in the second position, it will be preceded by
a q. In English, this backward TP, which is approximately .01, is
considerably lower than the forward TP. Backward TPs can, in
some cases, be considerably higher than forward TPs. Consider the
ez suffix in French (as in “parlez-vous français?”). The probability
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that given a z, it will be preceded by an e is .84 (http://
www.lexique.org/listes/liste_bigrammes.php), whereas the proba-
bility that an e will be followed by a z is a mere .027. Sensitivity
to forward TPs between word syllables is frequently cited as the
most important cue used by infants in word segmentation (e.g.,
Aslin, Saffran, & Newport, 1998; Saffran, 2001; Saffran, Aslin, &
Newport, 1996; Thiessen et al., 2005), but Pelucchi, Hay, and
Saffran (2009a) have recently shown that infants are also sensitive
to backward TPs.

There is also evidence for the use of TPs in adult AGL. Saffran,
Newport, Aslin, Tunick, and Barrueco (1997) demonstrated that
adults could use forward TPs to segment an AGL. Perruchet and
Desaulty (2008) demonstrated that adults use both forward and
backward TPs for word segmentation. Their study showing the use
of backward TPs as cues for segmentation will be of particular
importance in the present article because it provides a comparison
of recognition-based TRACX and prediction-based SRNs (Cleere-
mans & McClelland, 1991; Elman, 1990). We show that standard
implementations of an SRN are not able to simulate data in which
segmentation cues arise from backward TPs, whereas TRACX has
no problem doing so.

Summary of Adult Sequence Segmentation

During the IL of sequential information, adults are sensitive to
syllable and chunk frequencies in the input stream, as well as
forward and backward TP information. They also gradually extract
stimulus chunks from a continuous syllable stream and gradually
forget the subunits within chunks if these subunits are not re-
freshed outside the context of the larger chunk in which they are
found.

SL in Infants

Infant SL initially focused largely on the question of how infants
segment a continuous speech stream into lexical units. The raw
auditory signal generated by human speech is notoriously hard to
segment into words because breaks in the continuity of the signal
are poorly correlated with actual word boundaries (Cole & Ja-
kimik, 1980) and, therefore, are poor cues for word segmentation.
Nonetheless, it has been shown repeatedly that infants as young as
8 months can discriminate between items based on their novelty
with respect to a familiarization corpus of training items (e.g.,
Aslin et al., 1998; Jusczyk & Aslin, 1995; Pelucchi et al., 2009a,
Pelucchi, Hay, & Saffran, 2009b; Saffran et al., 1996).

Infants have been shown to be sensitive to many different cues
that could arguably contribute to their ability to segment natural
language. These include statistical regularities arising from gram-
mar; patterns of rhythm, stress, and tempo; and duration of pho-
nemes and syllables (Cooper & Paccia-Cooper, 1980; E. K. John-
son & Jusczyk, 2001; Jusczyk, Hohne, & Bauman, 1999; Jusczyk,
Houston, & Newsome, 1999; Klatt, 1976; Mattys, Jusczyk, Luce,
& Morgan, 1999; Nakatani & Shaffer, 1978). However, speech
segmentation can still occur, even in the absence of most of these
cues (Aslin et al., 1998; Jusczyk & Aslin, 1995; Saffran et al.,
1996). In particular, Saffran et al. (1996) focused on syllable
co-occurrence probabilities within the sound stream; specifically,
the difference between the forward TPs between adjacent syllables
within words, versus TPs between adjacent syllables on either side

of word boundaries. Saffran et al. (1996) used a synthesized
speech stream consisting of a random sequence of words drawn
from a small corpus of trisyllabic words that were chosen so as not
to resemble any words in the language to which the infant was
normally exposed. With very short exposure (2 min), infants were
still able to discriminate words from nonwords and partwords.1

The words and partwords that the infants were tested on were
present in the training stream, so the authors reasoned that the
discrimination was based on the fact that adjacent-syllable TPs
were lower at word boundaries than within words.

In a further study, Aslin et al. (1998) controlled for bigram
frequency and found that infants were still able to discriminate
words from partwords, reinforcing the conclusion that the crucial
cue for segmentation was adjacent-syllable TP information. A
large number of other results have supported these initial findings
(e.g., Saffran, 2001; Saffran, Johnson, Aslin, & Newport, 1999;
Saffran & Wilson, 2003; Thiessen & Saffran, 2003, 2009). Even in
the visual domain, infants appear to show sensitivity to co-
occurrence statistics with sequential stimuli (Kirkham, Slemmer,
& Johnson, 2002) and to conditional probabilities with spatially
distributed visual stimuli (Fiser & Aslin, 2001). Intriguingly,
Marcovitch and Lewkowicz (2009) reported that TP and frequency
information both contribute independently to infant segmentation
of visual sequences. Finally, infant SL has also been demonstrated
using speech stimuli in a natural language unfamiliar to the infants
(Pelucchi et al., 2009a, 2009b).

Jusczyk, Houston, and Newsome (1999) demonstrated that lexi-
calization of chunks also takes place, even in infants. They showed
that 9-month-olds learning the bisyllabic words doctor or candle
do not subsequently respond to the single syllable words dock or
can. A similar result was found in adults by Giroux and Rey
(2009).

Summary of Infant SL

The difference in TPs for syllable-pairs within words and TPs
for syllable-pairs astride word boundaries has been shown to be a
very powerful cue in infant word segmentation. This has been
demonstrated both for forward and for backward TPs. This sensi-
tivity to co-occurrence statistics has been shown for simple, care-
fully controlled artificial languages, streaming visual sequences,
and natural language speech streams. Finally, as in adults, chunked
words appear to have a relatively atomic nature, and subchunks
making up those words, if they are not heard independently else-
where, will be forgotten.

Computational Models of Sequence Segmentation and
Chunk Extraction

We divide the existing computational models of sequence seg-
mentation into three classes: symbolic/hybrid, connectionist, and
descriptive statistical models. This classification is designed only
for broad organizational purposes, since many of the models share
aspects of more than one class.

1 A partword is a syllable cluster consisting of syllables from the end of
one word and the beginning of the following word. So, for example, yellow
basket would give rise to the partword lowbas.
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Symbolic/Hybrid Models

One of the most successful approaches to modeling adult AGL
has come from symbolic/hybrid models. These include the com-
petitive chunking network (CCN, E. Servan-Schreiber & Ander-
son, 1990, see also Boucher & Dienes, 2003), PARSER (Perruchet
& Vintner, 1998), and CLARION (Sun, 1997), which are built on
principles drawn from both connectionist and symbolic modeling
and from models based on the ACT-R framework (Lebiere, Wal-
lach, & Taatgen, 1998). Of these, PARSER has modeled the
widest range of results, and PARSER is, without question, one of
the most successful models of chunk extraction to date. For this
reason, its architecture is worth a more detailed presentation.

PARSER consists of a working memory (WM) structure that
initially contains the individual syllables of the language. The
program serially scans an input stream of syllables, chunking
adjacent syllables and storing these chunks in WM. Syllable
chunks are formed at each time step of the program by randomly
selecting a value of 1, 2, or 3, which will determine the number of
successive items of the sequence the program will chunk together
on that time step. Items making up a chunk can be either primitives
(i.e., individual syllables) or other chunks that are still above a
preset strength threshold in WM. If the chunk already exists in
WM, then it is strengthened; if the chunk is not already present in
WM, then it is placed in WM. Now, suppose that the program
decides to pick the next two items in the sequence to form a chunk.
If the incoming syllables are, say, cdabefcdabcd—, it will scan its
WM to find the two longest chunks stored in WM that could make
up the initial section of cdabefcdabc—. If these are, say, cd and
abef, it will create a new chunk, cdabef, and put it in WM. The new
chunk interferes with all other chunks in WM based on how much
syllable overlap it shares with them, giving this particular aspect of
PARSER, perhaps inadvertently, a somewhat connectionist feel. A
forgetting parameter is also applied to all chunks in WM at every
time step. Only chunks that are above a particular predetermined
strength threshold are allowed to remain in WM. This ensures that
PARSER’s WM never contains too many chunks.

Connectionist Models

Connectionist modelers have typically taken one of two basic
approaches to sequential learning, using either recurrent or nonre-
current networks. These latter models of AGL have been some-
what less successful, so there have only been a few attempts to
apply them. For example, Dienes (1992) used an autoassociator
with localist inputs and no hidden layer that attempted to repro-
duce entire sentences. For modeling infant SL, Aslin, Woodward,
LaMendola, and Bever (1996) used a three-layer feedforward
network with a three-item moving window of inputs that attempted
to predict the presence of boundaries. However, this model only
worked when phonemes were encoded by their features and with
short (3–5 word) sentences. Sirois, Buckingham, and Shultz (2000)
used a simple autoassociator model to show how structural regu-
larities extracted from a speech stream by infants could be trans-
ferred to a different set of sounds with different surface features
(see Marcus et al., 1999). Finally, B. Anderson (1999) produced a
Kohonen-network model of Saffran et al. (1996). Presumably,
these models were not developed further because they only had
limited success on the problems to which they were applied.

However, there is an extensive body of research with SRNs
(Elman, 1990) for sequence processing. SRNs are prediction-
driven feedforward–backpropagation networks that attempt at
each time step to predict the next item of the sequence based on the
current item on input plus the network’s own internal state on the
previous time step. Elman’s original article, however, did not
propose SRNs as a word-learning mechanism. Cleeremans and
McClelland (1991) were the first to specifically apply the SRN to
capture sequence-learning performance. Other authors (e.g., Alt-
mann, 2002; Cairns, Shillcock, Chater, & Levy, 1994, 1997;
Christiansen, 1999; Christiansen, Allen, & Seidenberg, 1998; Mir-
man, Graf Estes, & Magnuson, 2010) later attempted to use SRNs
to segment words from continuous speech streams of infant-
directed speech. Dominey and colleagues (e.g., Dominey, 1998;
Dominey & Ramus, 2000) proposed replacing SRNs with more
biologically realistic temporal recurrent networks (TRNs) in which
each time-step corresponded to 5 ms of real time and the hidden
and recurrent units were leaky integrators with response times
between 20 ms and 400 ms. This family of models was success-
fully applied to serial-reaction time data (Dominey, 1998), the
Saffran et al. (1996) data that showed that 8-month-old infants
learned words better than partwords and could also discriminate
the distinctive rhythmic consonant-vowel patterns similar to those
found in English (Nazzi, Bertoncini, & Mehler, 1998) The under-
lying principle of both SRNs and TRNs is the same—namely, the
prediction of future events—as opposed to memory-based models
that simply recall whether a particular item (or sequential cluster of
items) has been encountered before.

Normative Statistical Models

Whereas the previous models (e.g., PARSER, SRN) attempt to
model the processes underlying word segmentation, normative
statistical models, in general, do not. Instead, they generally view
segmentation as a problem of descriptive statistics. For example,
an analysis of the infant-directed speech in the CHILDES database
(MacWhinney & Snow, 1985) by Christiansen, Onnis, and Hock-
ema (2009) revealed that there is ample TP and word boundary
distribution information in the naturally occurring speech that
infants hear to support lexical segmentation. Precursors to this
approach are found in the early work of Harris (1954, 1955), who
found that patterns of phoneme distributions in English gave
information that could, in principle, be used to predict word
boundaries. The most recent and sophisticated version of this
approach has come from Swingley (2005). As with Harris’s (1954,
1955) original work, this is a formal statistical analysis rather than
a process model of human cognitive performance. Swingley
(2005) described the success of a particular statistical algorithm
applied to infant-directed speech corpora in English (Korman,
1984) and Dutch (van de Weijer, 1998). This algorithm is syllable-
based and uses a heuristic clustering algorithm based on n-gram
frequencies and pointwise mutual information. Swingley com-
pared this algorithm with an approach based on n-gram frequen-
cies alone, without accounting for conditional probability, and
found that combining both types of cues resulted in a very large
benefit for both accuracy and comprehensiveness of segmentation
performance. The conclusion of this descriptive statistical analysis
strongly suggests that any process model of word segmentation
should also incorporate both types of cues.
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Another normative approach based on descriptive statistics
comes from a Bayesian perspective. There are numerous ap-
proaches of this type (e.g., de Marcken, 1995; Brent & Cartwright,
1996; Brent, 1999; Goldwater, Griffiths, & Johnson, 2009; Robi-
net & Lemaire, 2009; Venkataraman, 2001), most recently, Frank
et al. (2010). Originally, these approaches were described in terms
of minimum description length, but more recently, they have been
framed in terms of maximum likelihood estimation. On a concep-
tual level, all approaches of this type operate in a similar fashion
(e.g., Brent, 1999). They are not process models and use batch
processing of the data. That is, they take the whole corpus as a
single, unsegmented stream of phonemes and attempt to redescribe
it in terms of a set of words, thereby forming a more compact
representation of the stream. We discuss the performance of this
class of models, as reported by Frank et al. (2010), in more detail
below.

Summary of Computational Models of Sequence
Segmentation and Chunk Extraction

Three major computational approaches—symbolic/hybrid, con-
nectionist and descriptive statistical—have attempted to account
for human sequence processing performance, in particular, in the
areas of SL and IL. One of the key features that separates sym-
bolic/hybrid models (e.g., PARSER and CCN) from connectionist
models (e.g., SRN and TRN) is that the former rely on the
recognition of already encountered items, whereas are latter are
based on the prediction of upcoming items in the input stream.
While normative statistical approaches, such as Swingley’s (2005)
algorithm, can provide good accounts of the putative high-level
computations required for word segmentation, unlike TRACX,
PARSER, or SRNs, they are not process models and are, therefore,
difficult to compare directly with process models. For this reason,
we have not concentrated on these models in the present article
(see Luce, 1995; Mareschal & Westermann, 2010, and McClelland
et al., 2010, for further discussion of process versus normative
models).

The TRACX Model

We propose a simple recognition-based connectionist model of
sequence segmentation, TRACX, which provides a unifying
framework not only for infant speech segmentation and adult IL
but also for sequence segmentation and chunk extraction, more
generally. It combines the features of chunk-based models into a
single, parsimonious connectionist architecture.

The TRACX Architecture

TRACX has its roots in the recursive autoassociative memory
(RAAM) family of architectures (Blank, Meeden, & Marshall,
1992; Pollack, 1989, 1990). It is a connectionist autoassociator
model based on the implicit chunk recognition of previously
encountered subsequences of acoustic primitives, in this case,
syllables or phonemes. We have chosen the expression “implicit
chunk recognition” because, unlike various other connectionist
models of chunk extraction, such as SRNs (Cleeremans & Mc-
Clelland, 1991) and TRNs (Dominey & Ramus, 2000), TRACX is
based on the recognition of previously encountered subsequences

of items rather than on the prediction of upcoming items. This
recognition is implicit because, unlike symbolic/hybrid models of
chunk extraction, such as PARSER (Perruchet & Vintner, 1998)
and CCN (Boucher & Dienes, 2003), there is no explicit storage of
symbolic information in a separate WM. As in all connectionist
models, information is stored in the synaptic weights of the net-
work and, as such, is not directly accessible to the system.

Autoassociators are neural networks that gradually learn to
produce output that is identical to their input. Items that they have
encountered frequently will be reproduced on output; items that
have never been encountered before or that have been encountered
only infrequently will produce output that does not resemble the
input. In other words, an autoassociator provides a simple way of
answering the question, “Has the current input been encountered
frequently before?” If the error on output is small (i.e., the network
has already successfully learned the input pattern) then the net-
work “concludes” that it has encountered that input pattern before.
If the error on output is large, this means that the network does not
remember having previously encountered the current input. This
fact is essential to the TRACX approach.

Autoassociators have been used in the computational modeling
of behavior at least since Anderson’s “brain-state-in-a-box” model
(BSB, J. A. Anderson, Silverstein, Ritz, & Jones, 1977). Their
psychological and biological plausibility is now well established
(Rolls & Treves, 1997), and they have been successfully used as
psychobiologically plausible models of face perception (Cottrell &
Metcalfe, 1991; Dailey, Cottrell, Padgett, & Adolphs, 2002), hip-
pocampal/episodic memory (Gluck & Granger, 1993; Gluck &
Meyers, 1997), serial recall memory (Farrell & Lewandowsky,
2002), infant categorization (French, Mareschal, Mermillod, &
Quinn, 2004; French, Mermillod, Quinn, & Mareschal, 2001;
Mareschal & French, 2000; Mareschal, French, & Quinn, 2000),
and infant habituation (Sirois & Mareschal, 2004). Finally, autoas-
sociative networks can be shown to scale, from the restricted
experimental paradigms used in laboratory tasks to very large data
sets.

The original autoassociators (e.g., J. A. Anderson et al.’s, 1977,
BSB) had no hidden layer and, therefore, developed no internal
representations of the data that were input to them. A hidden layer
was added later in order to use autoassociators as data-
compression networks (e.g., Cottrell, Munro, & Zipser, 1988).
Mareschal and French (2000), Mareschal, French, and Quinn
(2000), and French et al. (2004, 2001) used autoassociators with a
hidden layer to model infant categorization. TRACX is an autoas-
sociator with a hidden layer that actively uses the compressed
representations developed by its hidden layer. In the case of word
segmentation, we suggest that infants, as well as adults, are in-
volved in a continual process of encoding new input into internal
representations and assessing this input against those representa-
tions, thereby allowing them to discriminate between words and
partwords in the input stream. For infants and adults, we assume
that their behavior will be different for syllable sequences that they
recognize as having heard before, compared with those that they
do not recognize as having heard before (e.g., Aslin et al., 1998;
Giroux & Rey, 2009; Jusczyk & Aslin, 1995; Pelucchi et al.,
2009a, 2009b; Perruchet & Desaulty, 2008; Saffran et al., 1996).
Similarly, TRACX will produce a smaller error on output for items
that it recognizes as having been encountered before (i.e., are
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better learned), compared with items that it recognizes less well
(i.e., are less well learned).

TRACX uses only standard learning parameters from the con-
nectionist literature, combined with a mechanism for presenting
internal representations on input. It performs chunking by “asking
itself” whether it has previously encountered the two items cur-
rently on its input together. If it has, then it chunks them. As we
show below, TRACX was able to successfully replicate the results
of seven different published studies from the adult IL and infant
SL literature, in addition to predicting the results of our own study
on equal TPs with different word/partword frequencies. In addi-
tion, we demonstrate that it can scale up to large databases, in this
case, of infant-directed language. And finally, we show that in a
simple bilingual microlanguage acquisition task, it is capable of
generalizing to new data and of developing clusters of internal
representations that reflect the structure of the data it is processing.

TRACX Implementation

The implementation and operation of TRACX is extremely
simple. It is a three-layer feedforward–backpropagation2 autoas-
sociator (see Figure 1). A syllable stream, S, is input syllable by
syllable to the network. Each of N syllables is locally coded as a
vector of N bipolar values (i.e., the bipolar representation for the
kth syllable has a 1 in the kth position and has �1 elsewhere).
TRACX has a 2N–N–2N feedforward-only topology. Importantly,
the number of hidden units must be equal to half of the overall

length of the input layer in order to allow recursion. The input
nodes are organized into a left-hand (LH) side and a right-hand
(RH) side, each side designed to hold vectors of length N. N is
determined by the number of syllables used in each task and, in our
simulations, can vary from 12 to 90.

Both input and hidden layers include a bias node whose activa-
tion is permanently set to �1. The learning rate of the network is
set to .04 for eight of the 10 simulations. In two other simulations,
lower learning rates were used for reasons that are explained in the
discussion of these simulations. The momentum term was always
set to 0. A Fahlman offset of .1 was added (Fahlman, 1988) to the
standard backpropagation algorithm to prevent learning stagnation.
This is a constant value added to the slope of the error landscape
to speed learning and is in no way fundamental to the architecture.

A standard hyperbolic tangent function (i.e., h�x� �
1 � e��x

1 � e��x
,

with � � 1) is used on the hidden and output layers. Syllable
representations from the input stream are fed into the input layer
sequentially. The network error at time t is determined by com-
paring the output of the network at time t with its input at the same
time t. The error is considered to be the maximum error over all of
the output nodes, a measure particularly suited to localist repre-
sentations.

We designate the LH input to the network at time t as LH(t),
the input to the RH side of the network at time t as RH(t), and the
hidden-layer activation vector at time t as H(t). The syllable in the
input stream that is presented to the network at time t is designated
S(t) (See Figure 1). Note that the left–right distinction does not
reflect any spatial ordering of the incoming information but simply
reflects its temporal ordering. On each time step, RH(t) is S(t). The
error criterion chosen was .4. Thus, for an output to be considered
below criterion, the error on each output node must be below .4.3

Information flows through the network as follows:

1. Initially, there are two syllables on input.

2. Activation is propagated forward, resulting in activation
on the output nodes.

3. The output activation is compared with the current input,
and an error measure is thereby determined.

4. This error measure (the maximum error over all output
nodes) is compared with the error criterion.

5. If, on the one hand, the error is greater than the error
criterion, then the next input to the network is created by
moving the value of RH(t) to the LH side of the input,
LH(t � 1). The next element in the input stream, S(t �
1) is put into the RH side of the input RH(t � 1).

2 Although backpropagation has sometimes been criticized as not being
a neurobiologically plausible learning mechanism (Crick, 1989), O’Reilly
and Munakata (2000) have presented a detailed defense of this class of
models, showing that they are in practice isomorphic to contrastive Heb-
bian learning models, which can be justified in a neurobiologically plau-
sible manner.

3 An output error less than .4 for all units of a bipolar encoding means
that the network can round all values to their correct value.

Figure 1. The TRACX model is a 2N–N–2N feedforward–
backpropagation autoassociator. If �, the difference between the input
activations and the output activations, is below criterion at time t, the
hidden unit vector will become the next left hand (LH) vector of the input
at time t � 1 and the right hand (RH) vector will be next item in the list.
If, on the other hand, the input–output activation � at time t is large, the
LH vector of the input at time t � 1 will be the input vector at time t, and
the RH input vector will be the next item in the list. Ht � hidden-layer
activation vector at time t; St � bipolar representation of syllable in the
input stream, S, that is presented to the network at time t.

619TRACX: A RECOGNITION-BASED CONNECTIONIST FRAMEWORK



6. If, on the other hand, the output error is below the error
criterion, then the hidden-unit values, H(t), are put into
the LH side of the input, LH(t � 1). The next element in
the input stream, S(t � 1), is put into the RH side of the
input, RH(t � 1).

7. Activation is propagated forward again, and processing
continues as from 3, above.

Learning in TRACX

The RH input units always contain an element from the se-
quence (i.e., an item from the environment). However, the LH
input units can contain either an item from the sequence or the
network’s internal representation of a number of items. These are
very different entities, one coming to the input directly from the
sensory interface, the other being internally generated and coming
to the input from within the network.

There is now ample evidence that signals within the brain can be
either internally generated or externally generated through direct
perception. In general, people are good at differentiating these two
classes of information (e.g., Christoff, Ream, Geddes, & Gabrieli,
2003; M. K. Johnson & Raye, 1981), suggesting that the signals
can be differentiated internally. Moreover, internally generated
signals can lead to actual learning, especially in the context of
memory consolidation and reactivation (e.g., Gelbard-Sagiv, Mu-
kamel, Harel, Malach, & Fried, 2008) and motor control (e.g.,
Jeannerod, 1995). However, the learning from internally generated
signals is often less potent than from externally generated signals
(e.g., Holmes & Calmels, 2008), possibly to avoid overlearning
previously encountered, low-frequency items or memories or to
avoid overlearning nonadaptive behaviors. Consequently, we
made the additional assumption that learning only occurred on
25% of the events in which there is an internally generated repre-
sentation (chunk) in the LH units than when there is a real item
from the environment in the LH units. Another way of thinking
about this is that the system pays greater attention (in terms of
learning) to new information arising from outside the system than
to internally generated information arising from the recognition of
previously encountered items.

Testing the Performance of TRACX

Testing consists of presenting each item to be tested to the
network. Consider first a two-syllable word, ab. Encodings of a
and b are put into the network’s LH and RH inputs and activation
propagated through the network. The error for ab is the maximum
error over all output units. Now consider a three-syllable item, abc.
As before, the first two syllables, a and b, are put into the
network’s LH and RH input units, respectively, and the resulting
activation is fed through to the network’s hidden layer. The
hidden-layer representation produced by a and b on input is then
put into the LH input units, and c is put into the RH input units.
The activation from this composite input is then fed through to the
output. A comparison is then made between the output of the
network and the composite input. The maximum of the absolute
values of the error across all output nodes is the error measure for

item abc. In other words, it is a measure of how familiar the chunk
abc is to the network.

An Example of Chunk Learning in TRACX

Assume that a language contains five words: abc, def, ghi, jkl,
and mno and that there is a long undifferentiated sequence, S, made
up of these words:

When the network has arrived at the arrow, assume it has f in the
LH input units and a in the RH inputs. It will do a feedforward–
backpropagation pass on this input. Having never encountered this
combination of syllables before, the autoassociative error will be
high, so on the next time step, it will shift a to the LH units and put
the next item in the sequence, b, in the RH units. But it has
encountered ab twice before, so the error on output will be lower.
If this error is below the error criterion, this tells the network it
must have encountered ab a number of times before, which means
ab must be a chunk. So, when the arrow moves to the c following
ab, the network will not put b into the LH input vector but rather
will put the hidden-unit activation pattern, Hab, which was pro-
duced by the autoassociation of ab on input to ab on output into the
LH input vector. Thus, (Hab)c is how the network represents abc
on the input layer. How far will this chunking process go? It will
eventually make the chunk Habc, but thereafter, the c can be
followed by g, m, j, a, or d. Thus, it will not remember that it
encountered, say, abcj, because it will have encountered that only
once for every five times it encountered abc. So, unless the string
S is very long, thereby allowing the network to see abcj many
times, it will not learn this as a chunk. Further, even if S is long,
the process of interference from other items will, in general,
prevent abcj from emerging as a chunk. In other words, low-
frequency chunks will simply never be formed.

TRACX and the SRN: Two Fundamentally
Contrasting Approaches to Sequence Segmentation
and Chunk Extraction

It is important to spell out clearly the major differences between
TRACX and its 20-year-old connectionist cousin, the SRN model.
In the simulation section, in addition, we present data on which
TRACX succeeds and the SRN fails. The SRN learns by predicting
the upcoming item in a sequence and by then comparing this
prediction with the item that actually appears. Based on the dif-
ference between its prediction and the item that really occurs, it
changes its weights to bring prediction closer to reality. TRACX
relies on a fundamentally different approach to learning; that is,
recognizing what it has previously encountered.

One might argue that the context units of an SRN are its way of
looking backward. There is some truth to this, but there is a
fundamental difference with respect to TRACX. An SRN always
includes the hidden-unit activations from the previous time step in
the input layer, whereas TRACX only does so when it encounters
input that it recognizes as having been encountered before. The
crucial difference between the two architectures and the philoso-
phy of learning that they implement is that in TRACX, the hidden-
unit activations that are put into the input layer are a compressed
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representation of the two previous items on input that were rec-
ognized as having been encountered before (i.e., an internal rep-
resentation of a “chunk”). This is not the case in an SRN in which
the key notion of the reinjection into the input of internal (com-
pressed) representations of previously encountered subsequences
of input is absent.

Since the SRN model is fundamentally tied to prediction, it
stands to reason that in situations in which prediction is of no help
in producing correct segmentation, it should fail. We show that this
is indeed the case.4

TRACX Simulations

The TRACX simulations are organized as follows. We first
present seven simulations of previously published data, a simula-
tion that predicts data that we subsequently confirmed in an
empirical study with infants, a simulation with a large infant-
directed language corpus to demonstrate TRACX’s ability to scale
up and, finally, present two simulations involving bilingual micro-
language acquisition designed to demonstrate two important addi-
tional properties of the model—namely, that it automatically clus-
ters the internal representations of the chunks it has discovered and
can generalize to new data.

These simulations use data from three areas: infant SL, adult IL,
and a real-world infant-directed language corpus. We begin by
presenting simulations of two classic experiments by Saffran et al.
(1996) and by Aslin et al. (1998). This is followed by five adult IL
experiments involving word extraction—namely, two experiments
from Perruchet and Desaulty (2008), two from Frank et al. (2010),
and one from Giroux and Rey (2009). In all of these experiments,
the number of words in the familiarization language was rela-
tively small, ranging from four words in the case of Aslin et al.
(1998) to 27 in Perruchet and Desaulty (2008). In order to test
the ability of TRACX to scale up, we ran the model on Brent
and Cartwright’s (1996) corpus of infant-directed speech. The
full corpus consists of 9,800 phonetically encoded sentences
containing a total of 33,400 words (1,321 different words) and
95,800 phonemes.

In two further simulations, designed to test the generalization
and the clustering capabilities of TRACX, we simulated an
individual who hears three-syllable words in two separate mi-
crolanguages. These simulations are similar to one developed
by French (1998) using an SRN in which, over time, the
hidden-unit activation patterns (i.e., the network’s internal rep-
resentations) for the words in both microlanguages form two
distinct clusters.

We then go beyond existing data by developing an equal TP
experiment in which all (forward) TPs, both within words and
between words, are equal but in which the backward TP between
within-word syllables (1.0) was 4 times that of between-word
syllables (.25). TRACX makes a clear prediction about this data—
namely, that words will be learned better than partwords—and we
show that this prediction is borne out experimentally with 8-month
old infants. We also show that the SRN model does not discrim-
inates words from partwords in this simulation as well as TRACX
because it can rely only on differential frequency information since
all forward TPs are identical.

Modeling Infant SL

Simulation 1: Saffran et al. (1996) Experiment 1

We started with the stimuli from the seminal experiment (Saf-
fran et al., 1996) on infant word extraction. This was the first
article to emphasize the importance of TPs in word segmentation
of a continuous sound stream. Infants heard a continuous stream of
words for 2 min in a technique developed by Jusczyk and Aslin
(1995). Six different words were constructed, each composed of
three distinct syllables drawn from an alphabet of 12 syllables. A
sequence consisting of 90 of these words (270 syllables), randomly
selected and with no immediate repeats or pauses between words,
was presented twice to 8-month-olds. The infants were then tested
to determine whether they were able to discriminate between the
words of the language and the partwords consisting of the final
syllable from one word and the first two syllables of another word.
The forward TPs were higher for syllable pairs within words than
for syllable pairs making up partwords. After infants listened to the
familiarization sequence, their attention was drawn to a speaker by
a flashing red light. Words (or partwords) from the familiarization
sequence were repeatedly broadcast from the speaker, and the
amount of time that the infant continued to look at the speaker was
measured. Infants looked at the speaker significantly longer when
they heard partwords, compared with words. Saffran et al. (1996)
invoked a novelty preference to explain these results. They rea-
soned that the infants had learned the words in the language better
than they had learned the partwords and, therefore, were more
attentive to the more novel partwords, generating longer looking
times than for words.

Like Saffran et al. (1996), we created a language of four trisyl-
lablic words and trained TRACX on a random sequence of 180 of
these words, with no immediate word repetitions. After familiar-
ization, the network was tested on its ability to discriminate be-
tween the words and the partwords made up of the final syllable of
one word and the first two syllables of another word. The results
are shown in Table 1. Network error is significantly lower for
words than partwords. This means that like the infants, TRACX
has on average learned the words in the familiarization sequence
better than the partwords, thereby allowing it to discriminate
between the two.

We also ran an SRN on this task. The SRN we tested had a
2N–N–N architecture (N � number of syllables), a learning rate of
.01 and momentum .9. We also ran the SRN with learning rates
other than .01, but this value gave the best results overall. We
tested it in the same way we tested TRACX, that is, by presenting

4 The SRN architecture could be modified so that part of the network
would “predict” syllables that had just been encountered, while the stan-
dard part would predict upcoming syllables, and a combined error measure
of the two predictions could be used for word/partword discrimination. But
this would constitute a fundamental change in the way in which SRNs are
conceptualized—namely, as networks that rely on prediction-driven learn-
ing. In fact, Maskara and Noetzel (1993) did something related to this by
combining an SRN, which predicts the next element, with an autoassocia-
tor that recognizes the current element in a sequence. This hybrid was
found to improve the natural language recognition ability of a basic SRN.
However, it still neither forms chunks nor segments sequences on the basis
of backward TPs.
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bipolar encodings of the test subsequences (words or partwords) to
the network, zeroing the context units, and recording the error after
the subsequence had been fed through the network. As can be seen
in Table 1, the SRN learned words better than partwords on the
Saffran et al. (1996) data.5

Simulation 2: Aslin et al. (1998) Experiment 1

In Saffran et al.’s (1996) familiarization sequence, in addition to
higher TPs for words than for partwords, words were heard 3 times
as often as their associated partwords. Aslin et al. (1998) devel-
oped an experimental design that removed these frequency effects.
They used four trisyllabic words, two of which were low-
frequency words and two of which were high-frequency words, the
latter occurring twice as often as the former in the familiarization
sequence. This meant that the partwords spanning the boundary
between the two high-frequency words, which we call HH-
partwords, would have the same frequency in the familiarization
language as the low-frequency words. At the same time, the
internal TPs for the low-frequency words (TPLF–word � 1) would
be higher than the TPs for the HH-partwords (TPHH–partword � .5).
During testing, the low-frequency words were tested against the
HH-partwords, and it was found that infants looked significantly
longer at the HH-partwords, reflecting the better learning of the
low-frequency words, compared with the HH-partwords.

After familiarization with a 270-word sequence, as in Aslin et
al. (1998), we tested TRACX on low-frequency words and HH-
partwords. The model’s performance is shown in Table 1. As in
Aslin et al., TRACX learned the LF-words significantly better than
the HH-partwords. The SRN, with the same parameters as in
Simulation 1, also learned words better than partwords for this
experiment.

Discussion of Infant Simulations

TRACX successfully models infants’ better learning of words
over partwords in the context of (a) differential within-word,
versus between-word (forward), TPs (Saffran et al., 1996) in an
artificial language and (b) differential (forward) TPs with word–
partword frequency matching (Aslin et al., 1998). As suggested by
Mirman et al. (2010), SRNs were also able to capture these data.

Adult IL

Simulation 3: Perruchet and Desaulty (2008)
Experiment 2—Forward TPs

In this and subsequent studies included in this section, adults
first listened to a familiarization sequence. They were then given
a series of single two-alternative forced-choice tests between a
randomly chosen word and a partword, both of which had occurred
in the familiarization sequence, and were asked which they were
most confident they had heard during familiarization.

In this simulation, we used the syllable sequences constructed
by Perruchet and Desaulty (2008), with a localist encoding scheme
as in the infant simulations. Nine different two-syllable words
were constructed from a set of 12 syllables: a, b, c, d, e, f, g, h, i,
x, y, and z. These words were concatenated, with no breaks
between them, into a familiarization string 1,035 words long. All

5 In Table 1, we use a “proportion better” measure to compare model
results and empirical data. This is a relative-difference measure and can be
applied equally well to error measures or to looking times. So, for example,
in Saffran et al. (1996) Experiment 2, babies looked at words for 6.77 s and
partwords for 7.60 s. This means that there was an absolute difference in
looking times of 0.83 s. The larger this difference, the better words have
been learned. Obviously, however, if the initial looking-time values had
been, say, 12.0 s and 12.83 s, this would also have given a difference of
0.83 s, but the relative difference would have been much smaller. For this
reason, we need to “normalize” the absolute difference by the total looking
time at both items. This gives 0.83/(6.77 � 7.60) � 0.06, which indicates
how much better words have been learned relative to partwords. This is the
measure we call the “proportion better” of word learning, compared with
partword learning. We use the same measure for the output error of the
model. Since the lower the error, the better the learning, we can compare
the difference between the output error for words (1.41) and the output
error for partwords (1.65) on the Saffran et al. (1996) familiarization data
and conclude that TRACX learned words better than partwords, the abso-
lute output-error difference being 0.24. As with looking time scores, we
need to normalize this value by the total error score (1.41 � 1.65) to get the
relative amount of how much better words were learned by TRACX,
compared with partwords—in this case, 0.24/(1.41 � 1.65) � 0.08. In
short, the proportion-better measure provides a simple means of comparing
empirical data with data produced by our model.

Table 1
Comparison of Humans, TRACX, and an SRN Across Five Studies

Experiment Simulation Population Segmentation cues Score type

Words learned significantly
better than partwords?

(Proportion better)

Humans TRACX SRN

Saffran et al. (1996) 1 Infant Frequency � Forward TPs Looking time Yes (.06) Yes (.08) Yes (.68)
Aslin et al. (1998) 2 Infant Forward TPs Looking time Yes (.04) Yes (.13) Yes (.58)
Perruchet & Desaulty (2008):

Experiment 2 3 Adult Forward TPs % Correct responses Yes (.34) Yes (.38) Yes (.80)
Perruchet & Desaulty (2008):

Experiment 2 4 Adult Backward TPs % Correct responses Yes (.22) Yes (.32) No (�.10)
Equal TP (this article) 9 Infant Frequency � Backward TPs Looking time Yes (.13) Yes (.50) Yes (.05)

Note. The values for all simulations are averages from 25 runs of the program. In all cases, the numbers represent how much better words were learned,
compared with partwords. See footnote 5 for a detailed explanation of the proportion-better score. TRACX � truncated recursive autoassociative chunk
extractor; SRN � simple recurrent network; TP � transitional probability.

622 FRENCH, ADDYMAN, AND MARESCHAL



words were frequency-balanced, occurring 115 times each in the
familiarization sequence. The internal forward TP between sylla-
bles of all words was 1. So, for example, one of the words was xa,
which meant that whenever x occurred, it was followed, with a
probability of 1, by an a. Any of the other 11 letters could precede
a, but x was always followed by an a. Words are learned signifi-
cantly better than partwords (Table 1).

As with the adults in this study, TRACX also learns the words
significantly better than the partwords. We also tested the SRN
model (with the same parameters as in the previous simulations).
It, too, was able to learn words better than partwords in this
condition. All results are shown in Table 1.

Simulation 4: Perruchet and Desaulty (2008)
Experiment 2—Backward TPs

Perruchet and Desaulty (2008) were the first to explicitly show
that backward TPs can be used by adults’ as a cue for word-
extraction. This result constitutes a critical experiment for the work
reported here.

The experimental methodology was identical to that described
in Simulation 3, except that backward TPs were manipulated. So,
for example, in the present study, XA is a 2-syllable word made up
of the syllables X and A. This word has an intrasyllable backward
TP of 1, which means that A can only be preceded by X. However,
X can be followed by any of the syllables in the set {A, B, C},
where A occurs 3 times as often as B or C. The frequencies of the
words in the familiarization sequence were adjusted so that as in
Aslin et al. (1998), the frequencies of the test words and partwords
in the familiarization sequence were identical. Forward TPs were
higher between the syllables on either side of a word boundary
(.33) than between the syllables within a word (.20). Based on FTP
information, this would have meant that partwords would be better
recognized than would words. However, the backward TPs within
a word (i.e., for the word XA, the probability of X, given A, written
p[X�A] is 1.0) were considerably higher than the backward TPs
between words (.20). Thus, if participants segmented at word
boundaries rather than at partword boundaries, one would have to
conclude that they had relied on backward TP cues to do so.

Participants in a forced-choice recognition test chose words
significantly more often than partwords. TRACX recognizes
words better than partwords. However, when we tested an SRN on
this task (with the same parameters used in the other SRN simu-
lations), it chooses partwords more often than words. All results
are shown in Table 1.

Simulation 5: Giroux and Rey (2009)

Giroux and Rey (2009) showed that sublexical units (which we
call subchunks) found within words become more difficult to
identify once they have been combined into a larger chunk. They
compared the recognition of the subchunks making up a word
early in learning and late in learning of the word. They found that
recognition performance for subchunks incorporated into larger
chunks decreased as learning proceeded. We simulated Giroux &
Rey as follows. We created a familiarization sequence made up of
two-, three- and four-syllable words. We then exposed TRACX to
this sequence, repeated 30 times. We tested how well various

subchunks making up the word were recognized by the network at
various points during learning.

We tested TRACX’s learning of the 4-syllable word klmn and
considered its subchunks kl, lm, and mn. Initially, the program
detects separate chunks kl, lm, and mn and begins to learn these
chunks. The error on these three small chunks drops rapidly.
However, kl and lm soon become a single chunk, klm, because m
is chunked to kl. Thereafter, lm will no longer be chunked sepa-
rately because it always appears as part of klm. Thus, while the
recognition error for lm initially dropped rapidly (when the net-
work still considers it to be an independent chunk), when lm
becomes incorporated into klm, the error associated with lm rises
(see Figure 2). Once klm is formed and systematically recognized
by the network, n begins to be chunked to klm to form klmn.
Thereafter, the subchunk mn gradually begins to be forgotten by
the network, and the recognition error for mn, like lm before it,
begins to increase (see Figure 2). Thus, for these two internal
subchunks (i.e., lm and mn), TRACX replicates the results of
Giroux and Rey (2009).6,7 This is presumably what happened in
English to words like mand and monish that were once indepen-
dent words but, through gradual lack of refreshment through use,
today survive only as subchunks of words like reprimand and
admonish.

This addresses a deep issue about chunking—namely, that all
chunks are not equally atomic. Chunks tend to become more

6 As for the leading chunk kl, TRACX continues to believe it is a
separate chunk. This problem would, presumably, disappear in the more
advanced version of TRACX referred to in the final paragraph of the
TRACX Implementation section, in which “lookahead” would spot previ-
ously discovered chunks in the raw input and would allow the network’s
internal representations of these chunks to be put into the RH-side of the
input.

7 We also tested the SRN on the Giroux and Rey (2009) data for various
sizes of the hidden layer. In contrast to TRACX, we were unable to get the
SRN to reproduce the empirically observed “early learning followed by
forgetting” rebound (see Figure 2) that occurs when subchunks gradually
become internalized within larger chunks (Giroux & Rey, 2009; Perlman et
al., 2010).

Figure 2. The subchunks lm and mn are initially extracted as words by
TRACX, but as soon as the system recognizes the larger chunk, klm, the
subchunk lm will gradually be forgotten by the network if it only appears
inside the chunk klm. Later, when the system recognizes that klmn is a
chunk, mn will also cease to be seen as a separate entity, and the network
will gradually forget it.
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atomic with use, and their subchunks become gradually harder to
notice. Compare breakfast and nosebleed, congressman and con-
gresswoman, and cupboard and fleabite. In each of these three
pairs of words, we hear the subchunks more clearly in the second
word. It is for this reason that it is important in later models of
TRACX to make the mechanism by which chunks are inserted into
the input layer stochastic rather than deterministic, the probability
of insertion being a function of the error on output on the previous
time step.

Simulation 6: Frank et al. (2010) Experiment 1

Frank et al. (2010) observed that as sentence length increased, it
became more difficult for adult participants to extract the words
from the familiarization language. They used a corpus of 18
syllables with which they created two 2-syllable words, two
3-syllable words, and two 4-syllable words. No words shared
syllables. They presented a continuous sound stream to partici-
pants made up of these words in which there was a brief pause

Figure 3. A comparison of the performance of seven models of adult implicit learning on two segmentations
tasks as a function of sentence length (left column) and vocabulary size (right column). Solid lines represent
human data, and dashed lines represent model data. All non-TRACX and non-SRN data are from “Modeling
Human Performance in Statistical Word Segmentation,” by M. C. Frank, S. Goldwater, T. L. Griffiths, and J. B.
Tenenbaum, 2010, Cognition, 117, p. 115. Copyright 2010 by Elsevier. Reprinted with permission. SRN �
simple recurrent network; MI � mutual information.
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after each sentence. They tested participants in eight conditions in
which sentences contained one, two, three, four, six, eight, 12, or
24 words. To simulate this, we created two 2-, two 3- and two
4-syllable words (ab, cd, efg, hij, klmn, and opqr) and used them
to build a set of eight different sequences of 144 words, containing
144, 72, 48, 36, 24, 18, 12, and six sentences. The learning
procedure was as before. Each sentence was presented to TRACX
six times during the learning phase. Figure 3 (left panels) shows
the difference between TRACX’s errors for words and partwords,
that is, the means by which TRACX discriminates between words
and partwords. The larger this value, the better the discrimination.
This difference drops as sentence length increases, meaning that
the longer the sentences in which the words and partwords are
found, the harder it is for TRACX to discriminate between them.
This is in agreement with the results of Frank et al. (2010), who
found that the percentage of words correctly extracted from texts
fell off as the sentences in which the words were found grew
longer. PARSER was run on these data, and its output did not
correlate with the human data found by Frank et al. (r � 0). The
SRN does well on this task (averaged over 25 runs with 12
different sequences per run), producing a correlation to human data
of approximately r � .60. TRACX, by comparison, produced
output whose correlation with human data is r � .92 (see Figure 3,
bottom left panel).

Simulation 7: Frank et al. (2010) Experiment 3

The more words there are in a language, the more difficult it
should be to learn (and remember) the vocabulary of that language.
Frank et al. (2010) tested this hypothesis by varying the number of
word tokens in an artificial language and observing how well
participants can distinguish the words of the language from part-
words.

All sentences contained four words, and the pool from which the
words making up each sentence was drawn consisted of between
three and nine different words, depending on the condition. Words
varied in length from two to four syllables. There were equal
numbers of two-, three- and four-syllable words in the familiar-
ization text.

This experiment is particularly important for the present article
because none of the five major models examined by Frank et al.
(2010)—namely, the TP model (Saffran et al., 1996), the pointwise
mutual information model (Frank et al., 2010), the Bayesian lex-
ical model (Goldwater, Griffiths, & Johnson, 2006, 2009), the
mutual information (MI) clustering model (Swingley, 2005), and
PARSER (Perruchet & Vintner, 1998, 2002)—succeeded in cap-
turing the human pattern of performance (Frank et al., 2010, p.
116). The correlations of the percentage of correct outputs of each
of these models with human data were �.99, �.99, �.98, .29, and
.00, respectively (see Figure 3, right panels). By means of a
somewhat counterintuitive reduction of the amount of data pre-
sented to the models to a mere 4% of the original amount, Frank
et al. were able to considerably improve the performance of the TP
model and the lexical model (cf. Figure 4 in Frank et al., 2010).
PARSER’s correlation to human data on this task was r � 0. The
simulations we ran with the SRN (averaged over 25 runs with 12
different sequences per run) showed a correlation of the output to
human data to be r � .33. With the same parameters as for the

previous simulations, TRACX produces output whose correlation
with human data is r � .97 (see Figure 3, bottom right panel).

Discussion of Adult Studies

TRACX successfully models adults’ better learning of words
over partwords in the context of (a) differential within-word,
versus between-word, forward TPs (Perruchet & Desaulty, 2008)
in an artificial language with frequency-controlled test words and
partwords; (b) differential within-word, versus between-word,
backward TPs (Perruchet & Desaulty, 2008) in an artificial lan-
guage with frequency-controlled test words and partwords; (c)
gradual forgetting of subchunks found inside chunks (Giroux &
Rey, 2009), if these subchunks are not independently refreshed; (d)
sentence length and the fact that words become harder to extract as
the length of the sentences in which they are found increases
(Frank et al., 2010); and (e) vocabulary size and the fact that words
become harder to extract as the number and length of the words to
be extracted increases (Frank et al., 2010).

Moreover, in contrast to TRACX, prediction-based SRNs were
unable to extract words better than partwords in the case in which
backward TPs were the cue for chunking. In addition, for the
experiments with increased sentence length and increased vocab-
ulary size (Frank et al., 2010), PARSER’s output was uncorrelated
to human data in both cases, whereas the output from TRACX was
highly correlated to human data.

Scaling up to the Real World and Generalization

In Simulations 8, 9, and 10, we explore two crucial issues. The
first is to see how well TRACX can scale up to the real world. The
second examines the organization of the distributed internal rep-
resentations of TRACX. We also show that this distributed orga-

Figure 4. TRACX’s differential word and partword output errors allow it
to distinguish two- and three-phoneme (phon) words from partwords in the
full corpus. Values plotted are average absolute error across all output units

(i.e.,
1

2N
¥i�1

2N � outi � ini �, where 2N is the size of the input and output

layers and N is the number of phonemes), and error bars show standard
errors of the mean.
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nization allows TRACX to generalize in a completely natural
manner to input that it has never previously encountered.

Simulation 8: Scaling up to the Real World—Brent
and Cartwright (1996)

For any cognitive model, it is crucial to show that the model can at
least potentially scale up to phenomena in the real world. To explore
TRACX’s ability to scale up, we tested it on a real-world infant-
directed language corpus prepared by Brent and Cartwright (1996),
using data from Bernstein-Ratner (1987). The first 10 sentences from
this corpus, along with their phonetic encodings, are shown
in Table 2.

The Brent and Cartwright (1996) corpus was several orders of
magnitude larger than all of the other corpora used in the other
simulations. For example, in the Aslin et al. (1998) study, a total
of four different words were used, and in Saffran et al. (1996), 6
different words were used. By contrast, the Brent and Cartwright
corpus consisted of 1,321 separate words, 9,800 sentences con-
taining a total of 33,400 words, and over 95,800 phonemes. This
meant that there were often long separations between repetitions of
the same word. A .04 learning rate was used in all of the previous
simulations with a small number of words and small corpora to
ensure rapid learning. However, in the very large Brent and Cart-
wright corpus, repetitions of the same word were often very widely
spaced, which meant that by the time a new occurrence of a
particular word occurred, the learning rate of .04 would have
changed the weights enough to have effectively erased all traces of
earlier occurrences of the word. We, therefore, lowered this learn-
ing rate to .005 for the present simulation. A sentence was pre-
sented to the network six times before moving on to the next
sentence. The architecture of the network and all other parameters
were identical to the other simulations. TRACX was trained on
five passes through the training corpus. It should be recalled that
only 12 of the 112 two-phoneme words—that is, yu, D6, Iz, It, tu,
du, D*, si, In, y), y&—and seven of the 384 three-phoneme
words—that is, D&t, WAt, DIs, lUk, k&n, &nd, oke—in the corpus
occur more than 1% of the time. In other words, TRACX is
learning these small phoneme-chunks, even though it has very
little overall exposure to them.

The testing procedure was patterned after the one used in the
other experiments, in which the experimenters tested participants
on words and partwords from the training corpus. We took a
number of two- and three-phoneme partwords from the text and
tested them against two- and three-phoneme words in the text.
Because of the large number of phonemes (90), we used average
error (rather than maximum error) over all output units as the
measure of error. This was because a maximum-error-across-all-
outputs measure does not distinguish between almost-perfect
learning (e.g., in which only one output unit is wrong) and terrible
learning (e.g., in which most of the output units are wrong). An
average-error-across-all-outputs measure solves this problem. The
results of a run of TRACX on this database are shown in Figure 4.
Even with this much larger corpus, words are learned better than
partwords.

Simulations 9 and 10: Generalization and the
Organization of TRACX’s Internal Representations

In order to demonstrate the ability of TRACX to develop
hidden-unit activation clusters that reflect structure in the world
and to show how it can generalize to new input, we have chosen
an example based on work using an SRN to model bilingual
language acquisition (French, 1998). We ran two simulations, one
in which it is relatively easy to demonstrate the methodology and
one that is considerably more demanding, to show that TRACX
really can extract structure from its input.

For the easy simulation, two microlanguages, Alpha and Beta,
consisting of three-syllable words were created. Each language had
its own syllable sets: initial, middle, and final syllables. The Alpha
language consisted of initial syllables {a, b, c}, middle syllables
{d, e, f}, and final syllables {g, h, i}. In like manner, the Beta
language consisted of initial syllables {j, k, l}, middle syllables {m,
n, o}, and final syllables {p, q, r}. A word in a given language
consisted of a random initial syllable, followed by a randomly
chosen middle syllable, followed by a randomly chosen final
syllable, all chosen from the syllable set corresponding to that
language. Thus, beh was a word from Alpha; knp was a word from
Beta. There were no markers indicating either word boundaries or
language boundaries. A typical language familiarization sequence
of syllables might look like this: adgbehbdgcficdgafglnrloplmpkn-
pjmrkmpbfgbehcdiafh. We generated a total of 10,000 words,
approximately 5,000 from each language. These words were
drawn from a subset of two-thirds of the possible words from each
language. At any point, there was a probability of switching to the
other language after each word of p � .025. TRACX, whose
parameter settings were identical to those used in Simulation 8
with a learning rate of .001, was given this familiarization se-
quence. After one pass through the familiarization corpus, the
network was tested on the full set of possible words in both
languages (i.e., including the one-third of possible words in
each language that it had never seen). For each possible word in
each language, we recorded the hidden-unit representation that
was produced. We then did a standard cluster analysis (Ward’s
method, Euclidean distance between vectors) and were able to
observe that the network consistently produced two distinct
clusters corresponding to the words of each language. In addi-
tion, with very few errors, all of the previously unseen items

Table 2
The First 10 Sentences From the Brent and Cartwright (1996)
Child-Directed Language Corpus

English Unsegmented phonemes

You want to see the book yuwanttusiD6bUk
Look there’s a boy with his hat lUkD�z6b7wIThIzh&
And a doggie &nd6dOgi
You want to look at this yuwanttulUk&tDIs
Look at this lUk&tDIs
Have a drink h&v6drINk
Okay now okenQ
What’s this WAtsDIs
What’s that WAtsD&t
What is it WAtIzIt

Note. From “Distributional Regularity and Phonotactic Constraints Are
Useful for Segmentation,” by M. R. Brent and T. Cartwright, 1996,
Cognition, 61, 93–125. Copyright 1996 by Elsevier.
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from each language (i.e., one-third of all possible words from
each language) were categorized correctly.

However, this simulation left open the question of whether
TRACX was sensitive to the structure of the words or was simply
basing its classification on the nonoverlapping syllable sets for
each language. We, therefore, ran a second simulation in which the
Alpha language was the same as before but in which Beta used the
same syllable set as Alpha. However, the initial syllables of words
in Beta were the middle syllables of words in Alpha, and the
middle syllables of words in Beta were the initial syllables of
words in Alpha. In other words, for adg in Alpha, there was a
corresponding word, dag, in Beta. A bilingual language stream of
10,000 words was produced as before, with a switching rate of
.025. Six words, three from Alpha and three from Beta, were left
out of the training sequence. When we analyzed the hidden-unit
representations as before, we found that TRACX was capable of
correctly clustering the languages and of correctly classifying the
six unseen words (Figure 5).8

Summary of Scaling up, Generalization, and
Clustering of Internal Representations

TRACX is able to scale up to corpora far larger than those in use
in typical experiments involving infant SL and adult IL. TRACX
also develops internal representations that reflect the structure in

the environment and can generalize appropriately based on that
structure.

Beyond Existing Data

Simulation 11: Box Languages—Flexible Use of
Frequency and TP Information

Simulations 1 through 10 show that TRACX can use backward
and forward TP information to identify word boundaries in a
stream of input. However, experimentally, it is difficult to fully
control word/partword frequency and TPs simultaneously. For
example, if forward TPs are balanced then, in general, the frequen-
cies of words and partwords in the text and/or backward TPs are
not.

8 The network does not always classify the hidden-unit representations
for words in each language (a total of 54 words) into exactly two perfect
clusters, as shown in Figure 5, but generally forms a small number of large
subclusters of representations of words from each language. This is, in
general, sufficient for correct classification of novel items. The exact
conditions (learning rate, chunking criterion, number of words, etc.) re-
quired to always produce perfect clustering for overlapping languages of
this type is a question for future research. The point is that TRACX is
capable of discriminating the two languages based on their structure alone.

Figure 5. Dendrogram of TRACX’s internal representations of three-syllable words from two microlanguages,
Alpha and Beta, after training on a corpus containing sequences of words from both languages. Alpha and Beta
use the same set of nine syllables to create their words and differ only on the structure of the words. TRACX’s
internal representations of the words from the two languages form two separate clusters, as shown in the figure.
TRACX was also tested on six new words that never occurred in the training sequence. Half of the test words
(adg, beh, cfi) had the structure of Alpha words. The other half (dag, ebh, fci) had the structure of Beta words.
All six words were correctly classified.
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We are aware of only two experiments to date that directly
examined the extent to which backward TPs can be exploited for
word extraction from a syllable stream. In the first, Perruchet &
Desaulty, 2008, explored whether adults could use backward TPs
to do word extraction; the second was a very similar study with
infants, in which Pelucchi et al., 2009a, used a natural language
corpus of real Italian words.

In both of these experiments, the frequencies of various words
found in the familiarization sequence but absent from the test
phase ensure that the test words and partwords have certain TPs.
For example, in the case of Perruchet and Desaulty (2008, Exper-
iment 2), the frequency of the words XA, YD, and GZ in the
familiarization sequence is 3 times as high as the frequency of
the words and partwords AX and XB that were presented during the
test phase. The assumption, potentially problematic, is that this
frequency imbalance has no influence on the words and partwords
tested. We therefore designed an experiment in which we con-
trolled for forward TPs and, at the same time, ensured that all
words (i.e., A-words, B-words, and C-words, see Figure 6) in the
familiarization sequence had the same frequency of occurrence.

The construction of the box language is shown in Figure 6.
There are three word blocks: A, B, and C. Between syllables
within a word, the TPs are all .5. So, p(a2�a1) � .5, p(a3�a1) � .5,
p(b2�b1) � .5, p(b3�b1) � .5, p(c2�c1) � .5, p(c3�c1) � .5. The TPs
between words are also .5. Thus, p(A�B) � .5, p(B�C) � .5,
p(C�A) � .5, and so on. This means that every A-word, say, a1a2,
can be followed by either a B-word or a C-word, with equal
probability. So, a1a2 can be followed by b1b2, b1b3, c1c2, or c1c3.
In other words, a1a2 will be followed half the time by b1 and half
the time by c1. Thus, the word a1a2 will occur twice as often as the
partwords a2b1 and a2c1. This means that forward TPs are identical
for all the syllable pairs, but word frequencies (i.e., frequencies of
A-words, B-words, and C-words) are twice partword frequencies.
This construction implies that backward TPs within words (�1)
are higher than those between words (�.25).

We first ran TRACX on a familiarization sequence of 135 words
(270 syllables) produced from this design and then tested the

network in the usual way on words and partwords from the
sequence. As can be seen in Figure 7 (left panel), TRACX learns
the words significantly better than it learns the partwords. It does
not need forward TP information to do chunk extraction and can
flexibly adapt the basis of its computation, depending on the
available informative cues. We also ran an SRN on the same
familiarization sequence. As shown in Table 1, the SRN does not
distinguish between words and partwords particularly well in this
simulation.

By simply “flipping” the transitions in each box (i.e., the
A-words would become a1a3 and a2a3, the B-words would become
b1b3 and b2b3, and the C-words would become c1c3 and c2c3), this
would produce a dual box language in which all backward TPs are
.5, but forward TPs were 1 for words and .5 for partwords, with
partword frequencies being twice that of word frequencies. We
suggest that simulations and experimental designs of this sort
might be used to tease out the relative contribution of frequency
and TP cues in sequence segmentation.

Testing a Model Prediction: Infant Segmentation With
Equal Forward TPs

TRACX can rely equally well on forward and backward TPs
and on frequency information to extract words from an input
stream depending on cue informativeness. Here, we establish that
8-month-olds can also do so. Having first replicated the key Aslin
et al. (1998) results (albeit with a different regional accent),9 we
generated new training and test stimuli that matched the grammar
described in Simulation 11, above. We tested a group of infants
using a preferential head turn procedure identical to that in the
original Aslin et al. (1998) work.

Method

Participants. The participants were 20 eight-month-old in-
fants (12 female, eight male; age M � 251 days; range: 226–279
days). A further 11 were excluded due to fussiness (nine), equip-
ment failure (one), or parental interference (one).

Stimuli. New stimuli were generated with the MBROLA
(Dutoit, Pagel, Pierret, Bataille, & Van der Vrecken, 1996) speech
synthesis package, using a British English voice. Samples were
recorded at a bit rate of 16 kHz. Two continuous familiarization
sequences, each lasting 3 min (810 syllables at 4.5 syllables/s),
were generated using the words shown in Table 3. The test stimuli
consisted of the six words and of six of the partwords, each

9 In order to (a) validate the procedure as run in our laboratory and (b)
ensure that the Aslin et al. (1998) findings would generalize to utterances
pronounced in British English, we first ran an exact replication of the
original Aslin et al. (1998) study showing that 8-month-olds could use
forward TP information to extract words from a speech stream. Thirteen
8-month-olds (six girls, seven boys; M age � 249 days, range: 232–277)
took part. The method and procedures are described in detail in the original
article and in the experiment reported in the main text of the current article,
with the exception that words were pronounced in British English. As in
the Aslin et al. (1998) study, infants looked significantly longer, t(12) �
2.57, p � .025, two tailed, at partwords (M � 12.6 s, SD � 3.67) than at
words (M � 10.7 s, SD � 3.72), confirming that infants can use forward
TPs to identify word boundaries when frequencies are equal.

Figure 6. The three “word” blocks A, B, and C. Between syllables within
a word (a1, a2, a3; b1, b2, b3; and c1, c2, c3), the forward transitional
probabilities (TPs) are all .5, and between-word forward TPs are also .5.

628 FRENCH, ADDYMAN, AND MARESCHAL



presented on its own, with a 500 ms gap between them, and
repeated until the infant looked away.

Procedure. The procedure matched exactly the methods re-
ported in Aslin et al. (1998). Infants were tested in a darkened,
soundproofed booth, seated on their caregiver’s lap. Throughout
the experiment, the caregiver wore headphones and listened to
music that masked the sounds presented. Two side-mounted speak-
ers were equidistant from the infant and each had a LED lamp
mounted on top of it. A third lamp was mounted directly in front
of the infant above a low-light video camera that recorded the
infant’s behavior. The stimuli were played back on Bose Compan-
ion 2 stereo speakers, controlled by a PowerMac G4 computer
running Matlab R2007b software. The computer also controlled
the blinking lights by means of a Velleman k8055 universal serial
bus (USB) interface board. An experimenter, seated in a separate
room, observed the infant and controlled the computer.

During familiarization, the 3-min sequence was played contin-
uously over both speakers. The lamp above one of the speakers
was always blinking on and off. But the illuminated side changed
at random intervals throughout familiarization. The test phase
consisted of 12 randomly ordered test trials, such that each test
item was presented three times. A trial began with the experi-

menter illuminating the central lamp to attract the infant’s atten-
tion. When the infant was looking forward, the central lamp
extinguished, and one of the side lamps started flashing. When the
observer determined that the infant had looked in the appropriate
direction (a 30° head turn), he pressed a key, and the computer
played the test word. The word played repeatedly with a 500 ms
silent interval between repetitions. A trial ended when the infant
looked away from the stimulus for at least 2 s. The experimenter
was blind to the order of the trial types.

Results. Infants looked significantly longer at partwords
(M � 12.2 s, SD � 2.92) than at words (M � 9.4 s, SD � 2.89),
t(19) � 4.62, p � .001, two tailed (see Figure 7, right panel).

Discussion of Infant Experiment

The familiarization sequence in this experiment, based on the
word/partword discrimination paradigm developed by Saffran et
al. (1996) and Aslin et al. (1998), was designed in such a way that
all forward TPs, both between syllables and between words, were
identical (i.e., .5). However, even though all forward TPs were
equal, the frequency of words was nonetheless twice that of
partwords; thus, backward TPs were different for words and part-

Figure 7. Left: TRACX learns the words significantly better than the partwords, even when all forward TPs
(both between syllables within words and between syllables on either side of word boundaries) are identical, but
word frequencies are twice as high as the associated partword frequencies. Results are averaged over 25 runs of
the program. Error bars are standard error of the mean. Right: Infants learn words better than partwords, even
when all TPs are equal, but word frequencies are twice as high as associated partword frequencies (n � 20). Error
bars are standard error of the mean. TPs � transitional probabilities.

Table 3
The Words and Partwords Used in the Equal TP Simulation and Experiment

Word block

Grammar 1 Grammar 2

Words Partwords Words Partwords

A fee-go go-nei go-duh tai-lu lu-koi lu-rou
fee-rou rou-nei rou-duh tai-duh duh-koi duh-rou

B nei-pau pau-fee pau-duh koi-pau pau-tai pau-rou
nei-koi koi-fee koi-duh koi-nei nei-tai nei-rou

C duh-lu lu-fee lu-nei rou-go go-tai go-koi
duh-tai tai-fee tai-nei rou-fee fee-tai fee-koi

Note. The six items in each Word column were used to generate a continuous familiarization sequence with the equal transition probabilities, according
to the grammar specified in the description of the equal TPs experiment. In the test phase, these six words were compared to six of the corresponding
partwords. TP � transitional probability.
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words. Infants could therefore rely on word/partword frequency
cues or backward TPs, but not on forward TPs, to extract words
from the speech stream. As Figure 7 shows, they were able to
discriminate words from partwords, looking time for words being
significantly less than that for partwords. We assume, along with
Saffran et al. (1996) and Aslin et al. (1998), that a novelty
preference was the cause of the longer looking times at the part-
words. In other words, the more frequently encountered words had
been learned better than the less frequently encountered partwords.

It would, therefore, seem that infants—like the TRACX model—
base word extraction on whatever cues happens to be available to
them, including forward or backward TPs as well as syllable or word
frequencies, in order to ascertain whether they have previously heard
a particular sequence of syllables.

General Discussion

In this article, we present TRACX, a connectionist model of
sequence processing and chunk extraction based on a mechanism
that we have called implicit chunk recognition (ICR). ICR relies on
the recognition of previously (and frequently) encountered subse-
quences of patterns (chunks) in the sequence being processed. This
model is intended to provide a unifying framework for the ubiq-
uitous cognitive skills of sequence processing and chunk extrac-
tion. Unlike symbolic/hybrid models of chunk extraction (e.g.,
PARSER; Perruchet & Vintner, 1998, 2002), it requires no WM in
which chunks are explicitly stored (and deleted) and does not carry
out operations on the items in WM. It also stands in contrast to
prediction-based connectionist models of sequence processing, in
particular, the SRN (Elman, 1990; Cleeremans & McClelland,
1991) and the TRN (Dominey et al., 2000). Moreover, TRACX
successfully captures adult human data when four different nor-
mative statistical models (and PARSER) failed to do so (Frank et
al., 2010). TRACX was also able to successfully simulate empir-
ical results from the infant SL literature, among them, classic
results from Saffran et al. (1996) and Aslin et al. (1998), as well as
results from real-world corpus data on infant-directed speech
(Brent & Cartwright, 1996).

We ran a total of nine simulations based on existing empirical
data and a simulation of bilingual microlanguage acquisition that
was designed to illustrate TRACX’s ability to generalize and
acquire clusters of internal representations reflecting categories in
the world. The success of TRACX at simulating a wide range of
results suggests that the model can provide new insights into
questions involving sequence processing and chunk extraction, in
general, and infant SL and adult IL, in particular. Specifically, it
suggests that (a) chunk formation proceeds via a process of rec-
ognition of previously encountered groups of items rather than via
a process of prediction-driven learning and that (b) sequence
processing and chunk extraction are graded, rather than all-or-
none.

As with all connectionist systems, chunk knowledge is implicit
in TRACX. Indeed, knowledge in connectionist systems is de-
scribed as being in the system, in the sense that it can be used by
the system but is not accessible to the system, in the sense that it
cannot be immediately redescribed by the system in a more ab-
stract or explicit format. In this sense, any chunks extracted from
a sequence of inputs are implicit.

In contrast to PARSER (Perruchet & Vintner, 1998), which uses
a perceptual-shaping threshold to cull from WM all chunks whose
strength fall below this threshold, TRACX has a recognition
threshold, which is an error threshold, below which the items on
input are considered to form a chunk. The crucial difference with
PARSER’s perceptual-shaping threshold is that no information is
explicitly removed from the TRACX system based on this chunk-
recognition threshold. The lack of appeal to explicit processes
makes TRACX far more suitable for modeling learning in prelin-
guistic infants and is consistent with the finding that adults often
improve their performance in AGL tasks but are unable to provide
verbal reports of the underlying syntactic structures in the task
(Reber, 1967). This is not to say that explicit knowledge plays no
role in adult performance, but the relation between implicit and
explicit learning is a complex one (e.g., Dienes & Perner, 1999;
French & Cleeremans, 2002). The issue of how they could both be
implemented in a single system and how they would interact is
beyond the scope of this article but has been discussed extensively
elsewhere (see, for example, Pothos, 2007, for a careful discussion
of these issues in the context of AGL).

Word Learning Versus Lexical Segmentation

TRACX performs sequence segmentation and chunk recogni-
tion. It was tested on segmentation in the dual domains of adult IL
and infant SL. However, it does not connect the chunks it has
found to concepts in the world. Rather, it is doing the precursor to
word learning, which is lexical segmentation. Word learning is
about learning the reference between a symbol (usually an auditory
symbol) and a referent in the world (Bloom, 1997; Plunkett, Sinha,
Moller, & Strandsby, 1992; Quine, 1960; Waxman & Booth,
2001). Lexical segmentation is assumed to be a prerequisite of
word learning in that it is the process of deriving what the infor-
mative sound symbols are in the infant’s language environment.
Only once these have been identified can the infant begin to learn
the relevant semantic mappings between the “word” and its refer-
ent, and indeed, the prior segmentation of words in a sound stream
facilitates word learning both in adults (Mirman, Magnus, Graf-
Estes, & Dixon, 2008) and infants (Graf-Estes, Evans, Alibali, &
Saffran, 2007; see also Mirman et al., 2010). In the adult AGL
literature, all semantic content is removed from the test stimuli
specifically to get at this presemantic chunking mechanism. It is,
therefore, worth noting once again how much the IL and SL
domains share common goals and assumptions, suggesting that a
common mechanism may be operating in both domains.

Poverty of the Stimulus Revisited

TRACX allows us to address some of the so-called “poverty of
the stimulus” criticisms of statistical language learning. In partic-
ular, Casillas (2008) argued that SL was insufficient because
infants must have some way of knowing what chunks to form, and
SL does not provide this. Gambell and Yang (2003, 2005) argued
that child-directed speech does not naturally lend itself to wordlike
segmentation. However, TRACX shows that unsupervised SL is
sufficient to do word extraction without requiring any prior infor-
mation as to what must be learned, even from a natural infant-
directed speech corpus. Of course, this is not to deny that other
cues enrich the infant’s learning environment and, therefore, im-
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prove their learning efficacy. In fact, this is most likely to be the
case. What TRACX shows is that SL is minimally sufficient to
support lexical segmentation for both small- and large-scale cor-
pora.

The Broader Importance of ICR

The chunking mechanisms implemented in TRACX raise a
number of issues about the nature of chunks themselves. In the
traditional artificial intelligence (AI) sense, chunking means ex-
plicitly creating a new symbol that stands for a string of subsym-
bols, that is potentially consciously accessible, and that can be
manipulated. If on time step t, TRACX’s input matches its output
(i.e., it recognizes that it has encountered that input before), then it
inserts the current hidden-unit representation into half of its input
on time step t �1. While the hidden-unit representation of the
input on time step t can reasonably be considered to be an internal
representation of a chunk consisting of the items in the LH and RH
sides of the input, this internal representation is in no way explicit,
in the sense that the network could subsequently explicitly gener-
ate the items from which it was built. This contrasts with PARSER
(Perruchet & Vintner, 1998), in which chunks are stored explicitly
in WM and could be enumerated by the program, if necessary.
This is not the case in TRACX, in which all chunks are stored in
a distributed manner across the synaptic weights of the network.
TRACX can recognize whether it has encountered a particular
chunk of items before, but it cannot generate the chunks it has
encountered at will.10

Conceptualizing chunks as patterns of activation across distrib-
uted hidden-unit representations also naturally implements a sim-
ilarity gradient across chunks. For example, because of their close
phonological similarity, which would be reflected in distributed
input coding, the chunks gaboti and kapodi would generate re-
sponses that were more closely aligned than, say, gaboti and
pudosa, even though none of the three chunks share any common
syllables. This would be particularly hard to implement in
PARSER. For the same reason, chunk interference falls naturally
out of TRACX’s mechanisms, whereas it has to be built in explic-
itly in models like PARSER.

That explicit manipulable chunks, such as breakfast, cup-
board, or doughnut, can exist is undeniable. However, a broad
interpretation of the results from TRACX would suggest that
explicit chunking might not be necessary to areas of cognition
in which unsupervised learning takes place. The essence of
TRACX is that it is gating information flow in the network as
a function of the familiarity (recognizability) of the current
input.

Extraction and Transfer of Abstract Structure

We have demonstrated that TRACX can achieve sequence seg-
mentation and chunk formation via recognition memory. One
important direction for future research with this model is to ex-
plore its ability to extract abstract structure from the sequences it
processes. For example, there are experiments dealing with the
learning of phonological sequences that study how phonotactic-
like constraints are learned by infants (e.g., Chambers, Onishi, &
Fisher, 2003) and adults (Onishi, Chambers, & Fisher, 2002).
These studies demonstrate the implicit learning of patterns that

generalize to novel test items. The apparent abstractness of the
regularities acquired implicitly can be quite striking (Chambers,
Onishi, & Fisher, 2010), although it also worth noting that some
authors (e.g., Perruchet & Pacteau, 1990; Pacton, Perruchet, Fayol,
& Cleeremans, 2001) have argued forcefully that the appearance of
abstract structures can arise from pairwise bigram associations and
are, therefore, not diagnostic of intrinsic abstract structures. Sim-
ilarly, there are studies that deal with the acquisition and transfer
of syntactic patterns (e .g., Marcus et al., 1999) and traditional
sequential RT tasks in which generalization is tested (e.g., Gupta
& Cohen, 2002).

We have shown in Simulations 9 and 10 that TRACX is capable
of developing internal representations whose organization reflects
the overall organization of the data that it is processing. In other
words, it is sensitive to simple structure in its input. In a different
context, that of active-to-passive syntax transformations, Chalmers
(1990) showed that the RAAM architecture is able to implicitly
extract abstract structure from the input that it is processing and
apply that structure to novel input. Since TRACX is a type of
RAAM architecture and since, in addition, it has been shown to be
able to extract elementary organizational structure from a bilingual
microlanguage environment, it is reasonable to suppose that it
might be able to extract more complex structure from the se-
quences that are presented to it. Blank et al. (1992) also show how
the internal representations of a RAAM model reflect the structure
in its input. Furthermore, Sirois et al. (2000) showed how simple
autoassociators could transfer statistical structures extracted from
sequences typical of the ones used to test infants to new test items
with different surface features. Finally, other (SRN-type) connec-
tionist architectures have also been shown to be able to transfer
structures to novel sequences (e.g., Altmann, 2002; Seidenberg &
Elman, 1999). This is clearly an area for future research for the
TRACX model.

Modifications of TRACX

The TRACX model is a simple instantiation of the principle of
ICR. It is intended primarily as a proof-of-concept model rather
than a full-featured model of sequence segmentation and chunk
extraction. In the simple form in which it has been presented in this
article, it is able to simulate empirical results from a wide range of
experiments in adult IL and infant SL. Further, a simulation of the
acquisition of two microlanguages was designed to demonstrate its
ability to generalize to new input and to develop internal clusters
of representations that reflect category divisions in the environ-
ment.

10 Because TRACX is a connectionist model, it does not store chunks
explicitly. They are stored in a distributed manner across the weights of the
network. For this reason, unlike a model that explicitly stores the chunks
that it has encountered (e.g., PARSER), TRACX can recognize that a
particular chunk, say, abc, has been encountered before, but it cannot, in its
current instantiation, generate the chunks it has encountered. There are
ways that this might be achieved, for example, by coupling a Helmholtz
machine (Dayan, Hinton, Neal, & Zemel, 1995) or a deep belief network
(Hinton, Osindero, & Teh, 2006) to TRACX during learning. This, how-
ever, is beyond the scope of this article. We focus on the recognition of
words in the input stream and not on the network’s ability to generate these
words.
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However, there are a number of things that the present version
of TRACX cannot do. First, it does not separate out words con-
sisting of a single syllable. There are numerous ways that this
problem could be dealt with, but no such mechanisms were added
to the current version of TRACX because it was felt that this
would distract readers from the main point of the present article—
namely, a novel mechanism of multi-item chunk extraction. This
issue also relates to the issue of the size of the input processing
window. At the moment, TRACX processes two input elements at
a time. Ultimately, this is likely to be insufficient. The number of
elements in the temporal window might, for example, more rea-
sonably correspond to the number of items that can be stored in
short-term memory.

There is also the issue of long-distance dependencies (i.e.,
recognizing a category of words a–X–b, in which X can be one of
a number of different syllables). Cleeremans and Dienes (2008)
claim no chunking models capture dependencies of this type.
Indeed, in its current form, TRACX could not learn these long-
distance dependencies. Again, one can imagine a modified archi-
tecture in which this would be possible. For example, there is no
a priori reason to limit the number of item vectors on input to two.
In any event, aside from the fact that people also find long-distance
dependencies very hard to learn in impoverished semantic-free
sequences typical of the studies modeled above (Mathews et al.,
1989), in the present model, no attempt was made to model this
type of dependency.

At least two further changes would make the model more
complex but more realistic. The first involves the hard cutoff for
the error criterion. As it stands, if the error measure is below a
preset criterion (in this case, .4), on the next time step, the hidden-
unit activations are put in the LH-side of the input to the network.
This should instead be a stochastic decision based on the amount
of error, specifically, the lower the error on output, the higher the
probability of putting the hidden-unit activations in the LH-side of
the input on the next time step.

The second change involves what can be put into the RH-side of
the input to the network. Currently, the RH-side input units can
only contain the representation of an individual item in the input
stream. This constraint ultimately needs to be removed, so that
chunked representations of several items would also be allowed in
the RH-side input. So, for example, if the network has already
created internal chunks for the words under and cover, it currently
cannot simply put the internal representation for under in the
LH-side input units and cover in the RH-side input units and
directly learn the new chunk undercover. For the moment, it can
only put the internal representation for under in the LH-side input
units and gradually, syllable by syllable, build up, first, under-co
and then under-co-ver.

One way to achieve this would be to have an identical copy of
the TRACX network, but one in which no learning occurred,
preprocess the sequence, looking ahead in the input sequence and
replacing previously encountered chunks of items by their internal
representations. Since these internal representations would have
the same length as the primitive items in the sequence, they could
be put into the RH-side inputs. This would also solve the problem,
encountered in Simulation 5 of Giroux and Rey (2009), in which
the initial chunk kl is never forgotten by the system in the same
way that lm and mn are. For the moment, however, we have not
implemented such a compound system, and consequently, the

RH-side input always contains a single element from the raw input
sequence.

Conclusion

TRACX is a computational model that is intended to provide
a general connectionist framework for sequence processing and
chunk extraction. The model implements a mechanism, ICR,
which automatically extracts chunks from continuous input and
uses these chunks for further processing. TRACX (a) does not
have heavy memory or processing requirements, (b) relies on
the recognition of previously encountered items rather than on
the prediction of upcoming items, (c) is not dependent on input
encoding and thus can be considered domain independent, (d)
can scale from laboratory tasks to real-world situations, (e)
develops internal representations that reflect structure in the
world, and (f) can do simple generalization to new input.

The results produced by TRACX suggest a new approach to
modeling sequence processing and chunk extraction. TRACX
was successfully tested on a wide range of empirical data in the
areas of adult IL and infant SL. It provides a novel, conceptu-
ally parsimonious, yet powerful, framework in which to model
sequence processing and chunk extraction in general.
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