

An investigation of maintenance mechanisms in working memory through phonological similarity and word length effects

Gérôme Mora¹, Valérie Camos^{1,2}, & Pierre Barrouillet³

1 University of Bourgogne

2 Institut Universitaire de France

3 University of Geneva

What is working memory?

- Time limited
- Capacity limited

- Responsible of

Phonological Loop model

(Baddeley, 1986, 2000)

- Phonological code
- Articulatory rehearsal

Evidences from:

Phonological Similarity Effect (PSE) = better recall for dissimilar than similar words cow day bar mad man cat

Word Length Effect (WLE) = better recall for short than for long words

sum hate harm friday humane cyclone

Time-Based Resources-Sharing model

(Barrouillet et al., 2007)

- Time-related trace decay
- Traces are refreshed by attentional focusing
- Switching of attention between Processing and Maintenance

Time-Based Resources-Sharing model

(Barrouillet et al., 2007)

Evidences of attentional refreshing come from:

Attentional demand effect = better recall with low than with high demanding processing

Maintenance of verbal information

Rehearsal

Refreshing

How the two mechanisms interplay?

Camos, Lagner, & Barrouillet (in press)

- 2 independent mechanisms
- Jointly used

An extended version of the Time-Based Resource-Sharing model

(Camos, Lagner, & Barrouillet, in press)

Two levels for maintenance of verbal information in WM

<u>Peripheral</u>		<u>Central</u>
domain specific: phonological	code	non specific
superficial	level of encoding	deep
R-based interference	forgetting	time decay
subvocal rehearsal	maintenance mechanism	attentional refreshing

The present study

articulatory suppression

attention demanding processing

Predictions

Rehearsal	Refreshing	PSE	WLE
✓	✓	Yes	Yes
×	✓	No	No
✓	×	Yes	Yes
X	×	No	No

Material Exp. 1

Words to remember:

2 pools of 96 monosyllabic French nouns

CVC phonological structure

Lists of 6 words

Gare
Cage
Vase
Bac
Panne
Chale

Results Exp. 1

1s w1

6s

w2

w3

w4

w5

w6

Recall

 $PSE \rightarrow F(1,20) = 15,96; p<.001$

Attention demand effect \rightarrow F(1,20) = 71,05;p<.001

No interaction Similarity*Attention → F<1

Conclusion Exp. 1

- When rehearsal is impeded refreshing is used
 When refreshing is impeded rehearsal is used
- Recall is better when rehearsal and refreshing are both available

No PSE when only refreshing is available

Refreshing is independent of similarity of phonemes

Material Exp. 2

Words to remember:

2 pools of 96 French nouns

Short words

- 3 phonemes
- 1 syllable
- 4 letters
- frequency 10< < 355

Long words

- 5 phonemes
- 2 syllables
- 6 letters
- frequency 8< < 368

Lists of 6 words randomly selected from:

Pool of **short** words

Pool of long words

Results Exp. 1

1s w1

6s

w2

w3

w4

w5

w6

Recall

WLE \rightarrow F(1,26) = 8,57;p<.001

Attention demand effect \rightarrow F(1,26) = 25,99;p<.001

No interaction Length*Attention → F<1

Conclusion Exp. 2

- When rehearsal is impeded refreshing is used
 When refreshing is impeded rehearsal is used
- Recall is better when rehearsal and refreshing are both available

No WLE when only refreshing is available

Refreshing is independent of number of phonemes

Conclusion

1

As previously observed (Camos et al., in press)

Rehearsal and Refreshing

- 2 independent levels of maintenance
- Can work jointly

2

Rehearsal Is dependant of phonological code whereas ...

Refreshing is independent of phonological characteristics

An extended version of the Time-Based Resource-Sharing model

(Camos, Lagner, & Barrouillet, in press)

Two levels for maintenance of verbal information in WM

<u>Peripheral</u>		<u>Central</u>
domain specific: phonological	code	non specific
superficial	level of encoding	deep
R-based interference	forgetting	time decay
subvocal rehearsal	maintenance mechanism	attentional refreshing

Thanks to :
Christelle El Osta
Marie-Aude Bardier

Grants : ANR MEN

