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Abstract

This study investigates the joint influences of three factors on the discovery of new word-like units
in a continuous artificial speech stream: the statistical structure of the ongoing input, the initial word-
likeness of parts of the speech flow, and the contextual information provided by the earlier emer-
gence of other word-like units. Results of an experiment conducted with adult participants show that
these sources of information have strong and interactive influences on word discovery. The authors
then examine the ability of different models of word segmentation to account for these results. PAR-
SER (Perruchet & Vinter, 1998) is compared to the view that word segmentation relies on the exploi-
tation of transitional probabilities between successive syllables, and with the models based on the
Minimum Description Length principle, such as INCDROP. The authors submit arguments suggest-
ing that PARSER has the advantage of accounting for the whole pattern of data without ad-hoc modi-
fications, while relying exclusively on general-purpose learning principles. This study strengthens
the growing notion that nonspecific cognitive processes, mainly based on associative learning and
memory principles, are able to account for a larger part of early language acquisition than previously
assumed.
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1. Introduction

Language acquisition initially proceeds from auditory input, and linguistic utterances
usually consist of sentences linking several words without clear acoustical boundaries. The
question thus arises: How do infants discover the words of their language? The seminal
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studies by Saffran and collaborators (e.g., Saffran, Newport, & Aslin, 1996) have allowed a
major advance on this issue. These studies have shown that infants, children, and adults can
extract the word-like units (hereafter: the words) from an artificial language in which these
units have been concatenated without any phonological or prosodic markers. This attests to
the fact that listeners are able to exploit the statistical information available in language. For
instance, participants would be able to find the word befoki from a sequence such as
““...dubefokita...,”’ because, when assessed from a sizeable corpus, the degree of cohesive-
ness between word internal syllables (e.g., between fo and ki) is stronger than the degree of
cohesiveness between syllables spanning word boundaries (e.g., between du and be).

As has often been emphasized, however, the fact that statistical cues turn out to be suffi-
cient to extract words from artificial languages does not mean that they are exclusive factors
in natural language acquisition. Many other sources of information have been documented
so far (for a review: Jusczyk, 1997). The first objective of this study is to further document
the way different factors interact when they are present together in an artificial language.
The second objective is to examine the ability of a specific word segmentation model, PAR-
SER (Perruchet & Vinter, 1998), to simulate the influence of these factors. A major interest
of PARSER is its ability to account for the exploitation of the statistical structure of the
language while relying exclusively on general-purpose learning principles. If PARSER
successfully simulates the effect of additional sources of information and their interplay, this
would strengthen the growing idea that nonspecific cognitive processes, mainly based on
associative learning and memory principles, are able to account for a substantial part of
early language acquisition.

In the following, we first describe the two additional sources of information that have
been manipulated in this study. Then we present the principles underlying PARSER, and we
outline how PARSER could, in principle, account for the exploitation of all three sources of
information. Of course, several other models have been proposed for word segmentation
(for a review, see Brent, 1999), and in addition, general memory models, such as
MINERVA 2 (Hintzman, 1986) or ETAM (Logan, 2002) could also be examined for their
ability to account for word segmentation in general and our findings in particular. As an
exhaustive examination of all models would exceed the scope of this study, PARSER will
be compared in the final discussion with some of the most common approaches, notably
with the view that word segmentation relies on the exploitation of transitional probabilities
(Aslin, Saffran, & Newport, 1998; Saffran et al., 1996) or on more sophisticated measures
of association between successive syllables (Swingley, 2005), and with the models based on
the Minimum Description Length (MDL) principle, such as the INCDROP model (e.g.,
Brent, 1996; Brent & Cartwright, 1996).

1.1. The initial word-likeness

Anyone exposed to an unknown speech flow may observe that some parts of it have a
stronger tendency to be perceived as a word than other parts. In the following, we refer to
the propensity of a given set of sounds (due to its intrinsic properties) to be considered as a
word by a given listener as its initial word-likeness (IWL). The degree of IWL may be due
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to a number of factors. Some of these factors are certainly universal, gestalt-like cues for the
formation of perceptual units, while others may be more specifically linked to a given lan-
guage, and hence dependent on the learners’ experience with their mother tongue. The role
of phonological and prosodic features, such as lexical stress placement, on word discovery
has been well documented (e.g., Creel, Tanenhaus, & Aslin, 2006; Curtin, Mintz, &
Christiansen, 2005; Thiessen & Saffran, 2007). The question of how statistical and phono-
logical or prosodic cues combine has been investigated in experimental studies in which
phonological and prosodic cues either helped or hindered the discovery of artificial words in
a continuous speech flow. These studies (e.g., Creel et al., 2006; Onnis, Monaghan, Chater,
& Richmond, 2005; Shukla, Nespor, & Mehler, 2007; Tyler, Perruchet, & Cutler, 2006)
have shown that performance in a word segmentation test improved in the former case and
strongly decreased (and potentially dropped at chance level) in the latter case. Other studies
have assessed the respective influences of these factors on word segmentation as a function
of age. For instance, Johnson and Jusczyk (2001) reported that prosodic factors override
statistics in 8-month-old infants, whereas Thiessen and Saffran (2003) reported a prevalence
of statistics over prosody in 6-month-old infants. Other factors may also contribute to the
relative IWL of a given set of sounds. For instance, the inclination of learners to consider a
given part of a new speech flow as a word may also depend on its similarity with one or
several words from the learners’ native language (even if Magnuson, Tanenhaus, Aslin, &
Dahan, 2003 have shown that this factor could be relatively unimportant, at least in the early
phases of training).

1.2. The role of context

The probability of discovering the words of a new language also depends on the context
in which they occur. The direct exposure to a speech flow composed of entirely new words,
as in a laboratory setting, is certainly an unusual experience in children’s everyday life.
Children necessarily acquire some words before others. A mechanism at play in natural lan-
guage acquisition could be the exploitation of known words to discover new words. To bor-
row an example given by Dahan and Brent (1999): “‘If look is recognized as a familiar unit
in the utterance Lookhere! then look will tend to be segmented out and the remaining contig-
uous stretch, here, will be inferred as a new unit’’ (p. 165). To provide an experimental evi-
dence of this phenomenon, Dahan and Brent (Experiment 1) exposed participants to short
nonsense utterances (e.g., either a two-syllable word ab or a three-sylable word abc) and to
long utterances beginning with the short utterances (e.g., a five-syllable sequence abcde).
Then participants were presented with items such as cde and de, and they were asked to
decide whether this item was a word from the artificial language they had just heard. Partici-
pants classified a test item as being a word more frequently when this item was the remain-
der of the long utterance after extraction of the short utterance (i.e., cde when the short
utterance was ab, and de when the short utterance was abc). Bortfeld, Morgan, Golinkoff,
and Rathbun (2005) demonstrated the same ability in 6-month-old infants. In this case, the
first part of the utterance was a highly familiar word, such as Mommy. It has been suggested
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that such lexically driven segmentation could progressively supersede prosodic and phono-
logical cues during language development (e.g., Matthys, White, & Melhorn, 2005, p. 493).

1.3. PARSER and the exploitation of statistical information

Before examining how PARSER can account for the exploitation of the two sources of
information described above, we first need to examine the principles underlying the model,
and why these principles make it able to exploit the statistical structure of a language.
Perruchet and Vinter (1998, 2002) have proposed that word extraction happens as a direct
consequence of the organization of the cognitive system. They characterized this organiza-
tion as the interplay of two interrelated principles. The first principle stipulates that percep-
tion shapes internal representations. This means that the primitives that are perceived within
one attentional focus as a consequence of their experienced spatial or temporal proximity
(i.e., they are perceived as a chunk) become the constituents of one new representational
unit. The future of this provisional unit, they argued, depends on ubiquitous laws of associa-
tive learning and memory. If the association between the primitives that form a provisional
unit is not strong enough in the language, this representation rapidly vanishes, as a
consequence of both natural decay and interference with the processing of similar material.
However, if the degree of cohesiveness between the primitives is sufficient, the internal
representation is progressively strengthened.

The second principle is that internal representations guide perception. Perception
involves an active coding of the incoming information constrained by the perceiver’s knowl-
edge. Internal representations serve as perceptual primitives. Because the representational
landscape changes with increased experience in a domain, perception, and notably the com-
position and the size of the perceived chunks, also evolves. The resulting picture is that per-
ception builds the internal representations which, in turn, guide further perception, hence
leading to the self-organization of the mind (Perruchet & Vinter, 2002). The mutual depen-
dence of perception and internal representations is in line with a developmental principle
initially described by Piaget’s concepts of assimilation and accommodation (e.g., Piaget,
1985). Most current theories of development, although they use different terminology, also
rely on the constructive interplay between assimilation-like and accommodation-like pro-
cesses (e.g., Case, 1993; Fischer & Granott, 1995; Karmiloff-Smith, 1992). A similar view,
which contrasts with the claim that perception is driven by a fixed repertoire of primitive
features, has been cogently documented by Schyns, Golstone, and Thibaut (1998) for visual
perception.

These principles have been exploited in PARSER, a chunk-based computational model
devised to discover words from a nonsegmented speech flow (Perruchet & Vinter, 1998).
How does PARSER work? Based on the phenomenon that, in humans, attentional codingl
of the ingoing information naturally segments the material into disjunctive parts, the model
is provided online with a succession of candidate units, such as foki and dube in our example
above, some of them relevant to the structure of the language and others irrelevant. Accord-
ing to the first principle described above, an internal representation that matches a percept is
reinforced in the model if its components are cohesive and occur repeatedly in the input.
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This means that a word or a part of a word (e.g., foki, because befoki is a word) are more
likely to create a long-lasting internal representation than between-word segments (e.g.,
dube, because in our example, dube spans over a word boundary). The relevant units emerge
through a selection process based on forgetting. Forgetting due to both decay and interfer-
ence” leads to the selection of the most cohesive parts among all parts generated by the ini-
tial, presumably mostly irrelevant, chunking of the material. The second principle described
above ensures the convergence of this process toward an optimal parsing solution. The fact
that perception is guided by internal representations allows the system to build representa-
tions of words whose components could hardly be perceived in one attentional focus if per-
ception were driven only by the initial primitives in the language. Also, once internal
representations providing an appropriate coding of the input have been built, an endless gen-
eration of new candidate units is avoided. Previous studies have shown that PARSER is able
to exploit the statistical cues available in the input (Perruchet & Desaulty, 2008; Perruchet
& Vinter, 1998; Perruchet, Vinter, Pacteau, & Gallego, 2002). However, up to now,
PARSER has only been applied to cases in which statistical information provided the sole
segmentation cue available in the language.

1.4. How can PARSER account for the exploitation of additional segmentation cues?

How can the influence of IWL be implemented in PARSER? Although PARSER has
never been made sensitive to IWL in prior simulations, the model has a natural way to inte-
grate this feature. In the original version of the model (Perruchet & Vinter, 1998), the initial
formation of candidate units (which are subsequently selected by the action of decay and
interference) was randomly determined. More precisely, a given unit might comprise one,
two, or three perceptual primitives. However, Perruchet and Vinter noted that selecting at
random the length of the provisional units was only a convenient way of simulating multiple
determinants of the initial segmentation, including ‘‘prior experience with another lan-
guage’’ and ‘‘the relative perceptual saliency of the components of the signal’” (p. 249).
This is a direct consequence of the fact that a chunk corresponds to one attentional focus,
and that the content of attentional processing is determined by the interaction between the
perceiver’s knowledge and the properties of the input. Implementing IWL into PARSER is
thus straightforward. In the simulations below, the initial selection of the candidate units
will be biased in such a way that instead of being randomly drawn within a given length
range, the candidate units will be selected (within the same range) as a function of their rela-
tive IWL, which had been assessed with a previous experiment on human participants
(Perruchet, Tyler, Galland, & Peereman, 2004).

Regarding now the exploitation of the surrounding context, PARSER, in principle, should
be efficient without any modification. This is because the coding of the incoming informa-
tion is constrained by the perceiver’s internal representations. More precisely, the disjunc-
tive partition of the sensory input that PARSER makes throughout its exposure to the
language is guided by the current perceptual primitives of the model. If the perceptual prim-
itives are the syllables, as it is postulated at the outset of training, this means that the cutting
edge between two candidate units will fall always at a syllable boundary, and not, say,
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between two syllable-internal phonemes. Now, in PARSER, the perceptual primitives
evolve throughout training, passing (ideally) from the syllable to the words. When a multi-
syllable unit becomes a new perceptual primitive, this provides a natural constraint on the
possible partitions of the speech flow. If PARSER is exposed to abcde while ab has been
previously built as a perceptual primitive within the model, the following percept necessar-
ily begins by ¢ (it can be ¢, cd, or cde, depending on random selection and on the available
perceptual primitives), hence increasing the probability of discovering cde (if ab is not a
perceptual primitive, provisional units such as abc and de, or a, bcd, and e, could be
created).

1.5. The present study

In summary, it is possible to distinguish at least three categories of factors involved in
word segmentation of an artificial speech flow: the statistical cues (i.e., the dependency rela-
tions between the primitives of the artificial speech flow), the IWL (i.e., the fact that the
intrinsic properties of a new sound sequence make it more or less likely to be considered as
a word of the language, irrespective of the origins of these initial biases), and the contextual
cues (i.e., the information provided by the speech flow surrounding a given sound
sequence). Our aim was to investigate participants’ behavior in an experimental situation
allowing us to explore the interplay between these three sources of information when all of
them are made jointly available (although not necessarily in a congruent way), and to com-
pare the ability of PARSER and a few other common approaches to simulate the observed
results.

Our situation was quite similar to the situation introduced by Saffran and collaborators
(e.g., Saffran et al., 1996). Participants had to listen to an artificial language composed of
six trisyllabic artificial words, randomly concatenated without any pauses. The main differ-
ence with regard to the standard situation was that the IWL was systematically manipulated
for three of the six artificial words. For one group of participants (Group IWL+), these three
words, when heard in a continuous speech stream, were spontaneously perceived as words
more often than trisyllabic units spanning word boundaries (referred to hereafter as part-
words), which may comprise either the last two syllables of a word and the first syllable of
the next word, or the last syllable of a word and the first two syllables of the next one. For a
second group of participants (Group IWL—), the words were composed from the same set of
syllables, but these syllables were arranged in such a way that the resulting words were
spontaneously perceived as such less often than the resulting part-words. In the test phase,
participants were presented with two-alternative forced choice paradigm (a word and a part-
word) and had to select the syllable set forming a word in the previously heard syllable
stream.

Our hypothesis was that positively biased words should be learned more quickly than
negatively biased words. This prediction may be thought of as self-evident, because if some
chunks of syllables are spontaneously detected as words in a continuous speech stream, then
they might also be preferred when played in isolation during the forced-choice test, hence
improving the word/part-word discrimination score. However, this was not our point. We
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hypothesized that IWL should affect learning, construed as the exploitation of the structure
of the ongoing speech flow, beyond its direct effects on performance in the test. To control
for possible direct effects of IWL, the same word/part-word forced-choice test was per-
formed twice. The first test was primarily devised to serve as a baseline to assess learning. It
occurred after a very limited exposure to the language (a small amount of language expo-
sure, instead of no exposure at all, was provided in order to give sense to the instructions,
which referred to the speech flow that had just been played). The second test occurred at the
end of the experiment, as usual. The effects of IWL should be captured in the first test, and
hence the change in performance between the two tests should provide a reliable measure of
learning—and, most crucially, reveal how learning is affected by IWL. Note that in most
studies, the direct effect of perceptual biases is controlled by withdrawing those biases from
the test items (Johnson & Jusczyk, 2001; Shukla et al., 2007; Thiessen & Saffran, 2003).
However, as a consequence, test items differ from study items in their perceptual properties
and this change in material might influence test performance, notably leading to underesti-
mation of learning (see Shukla et al., 2007, Experiments 1 vs. 3).

In addition to the three biased words, three other trisyllabic words were composed by ran-
domly concatenating nine syllables. Different combinations of syllables were used for each
participant. This procedure ensured that, on average, the IWL of these words and the IWL
of the part-words that are generated by the concatenation of these words did not differ.
Performance on these words should indicate how much participants are able to exploit their
growing knowledge of other words to guide further learning. The unbiased words, although
identical with regard to their statistical properties and their IWL, should be learned more
quickly in the Group IWL+ than in the Group IWL- because of the role of context, as
explained above (assuming our first hypothesis correct, i.e., that participants were sensitive
to the IWL of the biased words).

2. Experiment
2.1. Method

2.1.1. Participants

A total of 40 undergraduate students from the University of Bourgogne in Dijon, France,
participated in the experiment in partial fulfillment of a course requirement. All subjects
were native French speakers. Participants were randomly assigned to one of the two experi-
mental groups IWL+ and IWL-).

2.1.2. Materials

The language was composed of six trisyllabic words, half of them differing between
groups. The selection of the words that differed between groups (the biased words) was
based on the results of an earlier experiment (Perruchet et al., 2004, Experiment 1). In this
experiment, 12 participants (only the group ‘‘no-gap’’ is relevant here) were exposed to an
artificial language composed of 27 different words, obtained by the exhaustive combination
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of three first syllables (pu, be, and ta), three medial syllables (/i, ra, and fo), and three last
syllables (ki, ga, and du). These words were ordered in such a way that two consecutive
words did not share any syllable. A striking property of this language is that it is ‘‘statisti-
cally flat.”” This means that all sets of three consecutive syllables, whether they are words or
part-words, have exactly the same frequency. Likewise, the intra-word transitional probabil-
ities are exactly the same as the transitional probabilities between syllables spanning a word
boundary. After having heard the 27-word sequence (a different order was generated for
each participant), participants were informed that this language was composed of words.
They were told that other similar samples of this language would be played, and that, while
listening, they would have to write down on a sheet of paper the words that they perceived.
They then listened to four successive 40-s long samples of the language. Each sample was
composed of one instance of each different word. Progressive fades in and out were applied
to the first and last 5 s of each sample in order to avoid word boundary cues.

For the Group IWL+ of the present experiment, we selected three trisyllabic words that
were often written down, while sharing no common syllable. These words were befoki,
pulidu, and taraga. For the Group IWL—, half of the participants (those with an odd
number) were exposed to fokipu, liduta, and ragabe, and the other half (those with an even
number) to kipuli, dutara, and gabefo (none of these words appeared in participants’ produc-
tion in Perruchet et al., 2004). The words for the Group IWL+ served as part-words for the
Group IWL- and vice versa. The perceptual biases that are captured here have certainly
mixed origins. An important factor may be that all of the first and final syllables began with
a stop consonant, while all of the medial syllables began with a continuant consonant (Onnis
et al., 2005; Perruchet et al., 2004; Seidenberg, MacDonald, & Saffran, 2002). However,
other factors, such as the phonological similarity with a French word, may have played a
role as well. For the present study, our only objective was to distinguish two categories of
units as a function of their relative IWL, without teasing apart the presumably intricate
influences underlying this property.

The other three trisyllabic words (the unbiased words) were composed by randomly con-
catenating nine syllables (md, ne, so, vy, 3¢, d<, 1i, 10, ko). Different words were used
for each participant, hence making it quite unlikely that the material contains some residual
biases. However, as a further control, participants from the groups IWL+ and IWL— were
coupled, in such a way that Participant #n from the Group IWL+ was exposed to the same
unbiased words as Participant #n from the Group IWL—. As a consequence, any between-
groups difference in performance on unbiased words ought to be attributed to an influence
of biased words, rather than to an uneven selection of unbiased words.

The speech was synthesized through the MBROLA (Multiband Resynthesis Overlap
Add) speech synthesizer (http://tcts.fpms.ac.be/synthesis/; Dutoit, Pagel, Pierret, Bataille, &
Van Der Vrecken, 1996) with the FR2 diphone database. The mean syllable duration was
232 ms. The resulting WAV file was modified using CoolEdit. Progressive fades in and out
were applied to the first and last 5 s of each part of stream to avoid word boundary cues.
The speech stream was played through headphones connected to a personal computer using
CoolEdit.
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2.1.3. Procedure

Participants were told that they would listen to an imaginary language. They were asked
to avoid engaging in analytic, problem-solving processes. The initial phase of familiariza-
tion to the language lasted about 40 s. Each of the six words occurred 10 times. The words
were pseudo-randomly ordered for each participant, without immediate repetition. After this
initial phase, participants were told that they would be presented with pairs of items, and
that they would have to judge, for each pair, which item seemed more like a word of the
imaginary language. There were 36 pairs of items, with the two items of each pair being
separated by a 500-ms silent interval. Eighteen pairs involved trisyllabic items. Nine pairs
of trisyllabic items involved the biased words, and nine pairs involved the unbiased words.
For the test pairs with biased words, the words for the Group IWL+ were the part-words for
the Group IWL— and vice-versa. For the test pairs with unbiased words, words and
part-words were the same for each couple of participants. The remaining 18 pairs involved
bisyllabic items. They contrasted word internal bigrams to bigrams spanning over word-
boundaries. These bisyllabic items were introduced in order to avoid that participants
learned from the initial test that the language was composed of trisyllabic words, hence
potentially orienting their perception during the following exposure phase (for further
details about the construction of the material, and the exhaustive list of test items, see
Appendix A). The order of the items within a pair and the order of the pairs in the test
sequence were randomized for each pair of coupled participants.

After the first test, participants were told that the imaginary language would be played
again for about 8 min. Each of the six words occurred 120 times. At the end of this phase,
participants were submitted to the same test as previously (except the order of the items
within a pair, and the order of the pairs in the test sequence, which were randomized for
each pair of coupled participants).

2.2. Results

An anova was performed with Group (IWL+ vs. IWL—-) as a between-subjects factor and
Tests (initial vs. final), Word status (biased vs. unbiased), and Length (tri- vs. bi-syllabic) as
within-subjects factors. Because the length of the items elicited neither main nor interactive
effects in the anovas (all ps > .05), the data displayed in Fig. 1 were pooled over trisyllabic
and bisyllabic test items. As expected, the Group IWL+ outperformed the Group
IWL—-, M = 0.715, SD = 0.112 versus M = 0.547, SD = 0.129, F(1, 38) = 19.27, p < .001,
11‘3 = 0.336, and final performance was better than initial performance, M = 0.689,
SD = 0.177 versus M = 0.574, SD = 0.142, F(1, 38) = 35.36, p < .001, nﬁ = 0.482. The
interaction between the factors Group and Test was significant, F(1, 38) = 5.59, p = .023,
nﬁ = 0.128, indicating that language exposure was more beneficial to the Group IWL+ than
to the Group IWL—-. More crucially for our concern, this interaction was not modulated by
whether the biased items or the unbiased items were considered, as indicated by the nonsig-
nificant Group X Test X Word Status interaction, F(1, 38) = 0.51, p = 478, nﬁ = 0.013.
Responses on unbiased items were better in the Group IWL+ than in the Group
IWL—, although these items were identical in the two groups. This difference did not reach



264 P. Perruchet, B. Tillmann/Cognitive Science 34 (2010)

B Biased items O Unbiased items ‘

0.9

0.8 I

0.7

0.6 -

=

0.5

0.4

Proportion of correct responses

0.3 -
Initial Final Initial ‘ Final

Group IWL+ Group IWL-

Fig. 1. Proportion of correct responses in the initial and the final tests, as a function of Groups, for biased and
unbiased items. The biased items were positively biased in the Group IWL+, and negatively biased in the Group
IWL~-. Unbiased items were identical for the two Groups. Error bars represent standard errors.

significance during the initial test, M = 0.594, SD = 0.131 versus M = 0.547, SD = 0.138,
respectively, F(1, 38) = 1.23, p = .273, 11]2, = 0.031, but was highly significant during the
final test, M = 0.789, SD = 0.167 versus M = 0.628, SD = 0.157, respectively, F(1,
38) = 9.88, p = .003, 11[2, = 0.206, hence generating a significant Group X Test interaction
for unbiased items, F(1, 38) = 5.02, p = .031, 1712, = 0.117).

All the other main effects and interactions of the ANova were non significant, except the
two-way interaction between Group and Word Status, F(1, 38) =5.65, p = .023,
1112, = 0.129. For the Group IWL+, correct responses (pooled over initial and final tests) were
more numerous for the biased items (M = 0.739, SD = 0.126) than for the unbiased items
(M =0.692, SD = 0.124), whereas for the Group IWL—, correct responses were more
numerous for the unbiased items (M = 0.587, SD = 0.127) than for the biased items
(M = 0.507, SD = 0.193). However, in each case, these differences were marginally signifi-
cant at best, F(1, 19) = 3.27, p = .087, 1112, = 0.147; F(1, 19) = 2.94, p = .103, 11,2) = 0.134,
respectively.

Did learning actually occur in the Group IWL—-? When data were restricted to this group,
performance in the final test (M = 0.582, SD = 0.137) was still better than performance in
the initial test, M = 0.512, SD = 0.146, F(1, 19) = 7.26, p = .014, nf, = 0.276, attesting for
learning. The level of learning was comparable for biased and unbiased items, as shown by
the nonsignificant interaction between tests and items, F(1, 19) =0.26, p = .612,
11127 = 0.014. These results suggest that negatively biased items were learned. However, it is
possible that the discovery of negatively biased items in the Group IWL— was a conse-
quence of the segmentation of the unbiased items, in the same way as the discovery of the
unbiased items may be a consequence of the segmentation of biased items in the Group
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IWL+. A conservative conclusion is that statistical learning for negatively biased items is
not yet demonstrated, and that further studies involving only negatively biased items are
needed to settle the issue.

3. Simulations
3.2. Method

In PARSER (Perruchet & Vinter, 1998), the primitives that are perceived within one
attentional focus are assumed to become the constituents of a new representational chunk,
which can be thought of as a provisional candidate word (or part of a word). If those primi-
tives are not cohesive enough, the representation of the corresponding chunk rapidly van-
ishes, as a consequence of both decay and interference due to the processing of units sharing
the same primitives. However, if the primitives composing a chunk are strongly associated,
this chunk is progressively strengthened and serves to guide further perception. The detailed
algorithm is described in Appendix B.

As noted in the Section 1, PARSER has never been made sensitive to IWL in prior simu-
lations, but the model is endowed with a natural slot to do so, namely the initial selection of
the candidate units from the speech stream. The general principle is that these units are
attentionally driven and, as a consequence, are restricted to a small number of primitives.
However, some indeterminacy remains. Perruchet and Vinter (1998) noted that the selected
part of the sensory input probably depends on a number of features, such as the perceptual
saliency of the material. Because these factors have no reason to be correlated with word
boundaries, at least for artificial languages, their action was simulated by drawing at random
the number of perceptual primitives embedded in each provisional units within a (1-3)
range. Implementing a perceptual bias in PARSER was straightforward: The rationale con-
sisted in restoring the role of perceptual factors wherever it was artificially eliminated by a
randomly based selection in the original instantiation of the model.

It seems reasonable to assume that if a given set of syllables is spontaneously perceived
as a perceptual unit, it will be processed as a whole, insofar as this does not exceed the pro-
cessing capacity of the system. This hypothesis was implemented in PARSER to simulate
the effect of strong IWL (as shown by Perruchet et al., 2004). If, at a given processing step,
a positively biased unit was among the possible choices (i.e., the choices respecting the gen-
eral constraints of the model), then this unit was selected. This amounts to saying that the
sole effect of perceptual biases was to change the randomly drawn number of perceptual
primitives composing the current percept (within the standard [1-3] range) whenever this
change leads to select a positively biased unit. Note that the very same procedure was used
for the Group IWL+ and the Group IWL—-. What made the difference between the groups
was that the positively biased unit was a word of the language in the first case, and a part-
word in the second case. Because the algorithm of PARSER was left unchanged, the reader
may refer to Perruchet and Vinter (1998) for further precisions about the characteristics of
the model.
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For the sake of comparison with the experiment above, 20 simulations were run for
each of the two levels of decay explored in this study, as discussed in more detail
later. All the randomly generated features, including the order in which the words of
the languages were displayed, differed between simulations. The number of items used
for the simulations was the same as for the behavioral experiment, namely: Each of the
six words occurred 10 times during the first phase and 120 times during the second
phase.

3.2. Data analysis

Throughout training, PARSER is creating chunks, and each chunk is attributed a
weight, which may be conceived of as its strength in memory. The chunks ideally match
the words of the language when learning is at asymptote, but depart from those words
whenever training is still in progress. Assessing the performance of the model in a
forced-choice test identical to the test run by the participants needs a model of perfor-
mance, which is independent from PARSER itself. In the following, a response was gen-
erated for each word/part-word pair, based on the ratio between the weights of the word
and the part-word. Assuming that the word has a weight of 3 and the part-word has a
weight of 2 for a specific pair, a response was drawn at random with a bias of 3/(3 + 2)
in favor of the word (i.e., the probability of selecting the word was .6, and the probabil-
ity of selecting the part-word was .4). If a word or a part-word were not in the internal
lexicon of the model, its weight was considered to be null, and the same procedure was
applied. This means that if only the word or only the part-word was in the internal lexi-
con, it was always selected. If neither the word nor the part-word was in the lexicon, the
response was drawn at random without probabilistic bias.

The test performed by the participants included bisyllabic units, in order to avoid the
strategic search for trisyllabic units after the initial test. Dealing with the test pairs of
bisyllabic items in the same way as the test pair of trisyllabic items (i.e., as a function of
their presence in PARSER’s lexicon) would have been inappropriate. Indeed, bisysllabic
chunks may be created when learning is in progress, but they normally disappear by
decay and interference when learning progresses (see Giroux & Rey, 2009, for empirical
evidence). However, it is likely that human participants are able to recognize a short seg-
ment even if it does not match entirely a given lexical entry, and they may use this
knowledge to address the task demand. For instance, if readers were asked to judge
whether ‘‘xical’’ recently appeared in this study, it is likely that they would say ‘‘yes’’
on the basis of their memory of having read ‘‘lexical’” a few lines ago. This would hap-
pen even though ‘‘xical’’ is presumably not internally represented as a unit. The same
rationale was applied to PARSER. A bisyllabic unit was considered as learned not only
when it was represented as such in the model’s lexicon but also when it was a compo-
nent of a learned trisyllabic unit. Because performance on bisyllabic items depends, at
least partially, on the knowledge of trisyllabic items, results were pooled over bisyllabic
and trisyllabic test items (note that there was no difference in human participants as a
function of items).
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3.3. Results

The selection of free parameters is an ubiquitous problem in computational research. The
general strategy adopted in earlier studies using PARSER (e.g., Frank, Goldwater,
Mansinghka, Griffiths, & Tenenbaum, 2007; Giroux & Rey, 2009; Perruchet & Peereman,
2004; Perruchet et al., 2004) has been to first apply the parameters used in the initial study
(Perruchet & Vinter, 1998; hereafter those parameters will be referred to as the standard
parameters). In many cases, no subsequent adjustment of the parameters is needed. How-
ever, there are cases in which using the standard parameters leads to observing ceiling or
floor effects. This outcome can be fixed through a modification of the rate of forgetting.
Because PARSER proceeds through the selection of candidate units, forgetting must be nei-
ther too fast (PARSER would forget everything) nor too slow (PARSER would retain every-
thing). This strategy (i.e., initial use of standard parameters, eventually followed by an
explicitly motivated parameters adjustment) does not offer a guarantee that the reported
results are invariant across a broad range of parameter settings (Boucher & Dienes, 2003).
However, this ensures at least that performance fitting is not the end result of trial-and-error
attempts to improve fitting through arbitrary parameter adjustments (note that when PAR-
SER’s other parameters are changed for exploratory purposes, this usually does not alter the
general pattern of results; e.g., Frank et al., 2007).

The results obtained with the standard parameters are shown in Fig. 2. Half of the scores
were at or near to 100%, hence indicating ceiling effects. Perruchet and Vinter (1998) also
noted that PARSER tends to outperform human performance when trained with the same
material. We performed an aNova as for human participants with Group (IWL+ vs. IWL-)
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Fig. 2. Simulations from PARSER using the parameters of Perruchet and Vinter (1998). As for human partici-
pants, the figure reports the proportion of correct responses in the initial and the final tests, as a function of
Groups, for biased and unbiased items. Error bars represent standard errors.
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as a between-subjects factor and Test (initial vs. final) and Word status (biased vs. unbiased)
as within-subjects factors. Although many effects were trivial or not interpretable due to
ceiling effects, this analysis confirmed that (a) performance in the Group IWL+ was better
than in the Group IWL—, F(1, 38) = 269.28, p < .001, nﬁ = 0.876, hence indicating that the
implementation of the perceptual biases was effective; and (b) performance improved
between the initial test and the final test, F(1, 38) = 230.90, p < .001, nﬁ = 0.859, hence
attesting for learning. Learning also occurred when the analysis was restricted to the Group
IWL- F(1, 38) = 181.46, p < .001, 1712, = 0.905, despite the fact that part-words were posi-
tively biased.

During the initial test, performance on the biased words was almost at maximum in the
Group IWL+ and nearly at chance level for the Group IWL—. Crucially, this effect trans-
ferred to the unbiased words, despite the fact that these words were identical between
groups. The effect of bias on the unbiased words was attenuated, but it was still significant,
F(1, 38) = 4.66, p = .037, 113 = 0.109. Thus, the effect of IWL was certainly excessive in
the simulation, but the same trends as in human participants were observed.

To decrease the efficiency of learning in PARSER with the aim of removing ceiling
effects, the rate of forgetting must be increased. This may be performed by manipulating
either the rate of decay, the rate of interference, or both of them. For the sake of simplicity,
only the rate of decay was manipulated in the present study. In addition, the action of IWL
was made probabilistic, in order to reduce the influence of this variable on performance. We
ran a set of simulations in which (a) the rate of decay was gradually increased (with a step
of .005) starting from the standard value (.05), until the disappearance of ceiling effects and
(b) the selection of a positively biased unit (among possible choices at a given processing
step) was constrained on a probabilistic basis. The probability was set to .5, which means
that on a given processing step, there was 50% chance for the selection of the positively
biased unit to be constrained (as explained above). When the selection was not constrained,
the usual algorithm was applied (i.e., the selection of the positively biased unit was neither
compelled nor prevented).

Fig. 3 reports the results collected with a forgetting rate of .085, which was the first value
for which performance was inferior to 100% in all conditions. An aNova was performed
with Group (IWL+ vs. IWL-) as a between-subjects factor and Tests (initial vs. final) and
Word status (biased vs. unbiased) as within-subjects factors. As expected, the Group IWL+
outperformed the Group IWL—, F(1, 38) = 104.52, p < .001, 111% = 0.733, and final perfor-
mance was better than initial performance, F(1, 38) = 93.88, p < .001, V[ﬁ = 0.712. The
interaction between the two factors was significant, F(1, 38) = 31.47, p < .001, nﬁ = 0.453,
indicating that language exposure was more beneficial to the Group IWL+ than to the Group
IWL~-. However, planned analysis showed that learning remained significant when the anal-
ysis was restricted to the Group IWL—, F(1, 19) = 9.00, p = .007, 11]2, = 0.321.

As for human participants, the Group x Test interaction did not differ as a function of
whether the biased items or the unbiased items were considered, as indicated by the nonsig-
nificant Group X Test X Word Status interaction, F(1, 38) = 0.51, p = .479, nﬁ = 0.013.
Analyses performed separately on biased items and on unbiased items showed that language
exposure was more beneficial to the Group IWL+ than to the Group IWL—- for each of the
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Fig. 3. Simulations from PARSER after the forgetting rate has been increased until the performance was inferior
to 100% in all conditions, and with the effect of IWL having been made probabilistic. As in Fig. 2, the figure
reports the proportion of correct responses in the initial and the final tests, as a function of Groups, for biased
and unbiased items. Error bars represent standard errors.

two categories of items—biased 1tems F(1, 38) = 88.16, p < .001, 17 = 0.699; unbiased
items: F(1, 38) = 65.52, p < .001, n = 0.633. Also as for human partlclpants the interac-
tion between Group and Word Status was significant, F(1, 38) = 12.16, p < .001,

2 = (.242. For the Group IWL+, correct responses were more numerous for the biased
items than for the unbiased items, F(1, 19) = 5.19, p = .034, nﬁ = 0.215, whereas for the
Group IWL—, correct responses were more numerous for the unbiased items, F(1,
19) = 7.32,p = .014, 55 = 0.278.

An overall comparison between Fig. 1 (human data) and Fig. 3 (simulation) indicates that
PARSER was successful in generating the pattern observed in human participants without
implementing any ad-hoc algorithmic changes. Learning for biased items was better for the
Group IWL+ than for the Group IWL—, even though our measure of change (i.e., the com-
parison between the two tests) controlled for the direct effect of IWL on word/part-word
selection, and this difference transferred to the unbiased items.

4. Discussion
4.1. The interplay of statistical cues, IWL, and contextual information

In the reported experiment, participants were exposed to an artificial language in which
word segmentation could be influenced by three sources of information. The first one was

statistical information, and more specially the fact that word internal syllables are more
cohesive than syllables spanning word boundaries, as in all studies patterned after the design
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of Saffran and collaborators (e.g., Saffran et al., 1996). This feature was identical for all par-
ticipants. The second source of information was the relative IWL of words and part-words.
For three of the six words, the selection was made from the results of a prior study
(Perruchet et al., 2004) in such a way that, for half of the participants (Group IWL+), the
words were spontaneously perceived as perceptual units in a continuous speech flow more
often than the part-words generated by the succession of the words, whereas for the other
half of the participants (Group IWL-), part-words were spontaneously perceived as percep-
tual units more often than the words. The third source of information concerned the other
three words, which were perceptually unbiased. For the Group IWL+, information to extract
these unbiased words was provided by the positively biased words, which were assumed to
be identified earlier during the familiarization phase than the unbiased words. The Group
IWL—, for which the corresponding information was not available, served here as a control.

The main result was that, after language exposure, the increase in performance in a forced
choice segmentation task was larger for the Group IWL+ than for the Group IWL—, indicat-
ing that word discovery was affected by the IWL. The exploitation of statistical regularities
was more efficient when IWLs fit with the language structure than when they contradicted
this structure. Crucially, this facilitation transferred to the unbiased words, indicating that
word discovery was also affected by the context. Indeed, learning of unbiased words was
better when these words were mixed with positively biased words (Group IWL+) than when
these words were mixed with negatively biased words (Group IWL-), despite the fact that
these unbiased words were the same for the two groups of participants, and hence shared all
of their statistical and perceptual properties.

Although the joint influences of the three sources of information considered here had not
been previously tested, the effects of these factors taken individually have received a differ-
ent amount of experimental support in earlier studies. The exploitation of statistical regulari-
ties in word segmentation has been well-documented since the studies by Saffran and
collaborators (e.g., Saffran et al., 1996). The influence of phonological and prosodic cues on
this type of learning has also been demonstrated (e.g., Creel et al., 2006; Onnis et al., 2005;
Shukla et al., 2007; Tyler et al., 2006), but with a different experimental method. In earlier
studies, some acoustical cues were added to the otherwise perceptually flat language during
the familiarization phase. They were withdrawn from the items played during the test, to
prevent these cues from directly influencing the responses during the test. In our experiment,
the very same stimuli were played during the familiarization phase and during the test
phase. The direct influence of perceptual cues on the forced-choice test was controlled by
comparing performance collected after a short exposure to performance after longer expo-
sure, on the assumption that the direct influences of these cues were identical in the two
tests. Finally, the positive effect of knowing some words of the language in discovering the
other words has also received some earlier support from the studies by Bortfeld et al. (2005)
and Dahan and Brent (1999), although in very different conditions. In those earlier studies,
participants were assumed to have acquired a given word (either a familiar word such as
Mommy for the infants in Bortfeld et al.’s study, or a nonsense word presented in isolation
in the study of Dahan and Brent), and the training utterances consisted of short sequences
comprising this word in combination with a single other new word. In this paradigm,
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everything has been arranged to facilitate the exploitation of the known word by the learner.
Our present experiment involved a more complex experimental setting. All the words were
mixed within a single continuous sequence, and they only differed with regard to their rela-
tive IWL. The influence of the earlier extracted words on the discovery of the other words
suggests that the importance of this process in word segmentation is somewhat undervalued
in the current literature (but see Brent, 1999).

Our hypothesis was that PARSER (Perruchet & Vinter, 1998) could account for the joint
influences of the three sources of information considered above. Indeed, the model relies on
the formation of attentional chunks, the content of which partly depends on IWL. Moreover,
because internal representations guide the partitioning of the sensory input, the early forma-
tion of some chunks naturally guide the model toward the discovery of other chunks. These
predictions were tested by entering the language heard by the participants into PARSER.
The only change to the original model (Perruchet & Vinter, 1998) was that the initial selec-
tion of the candidate units was biased by IWL. Positively biased units (whether they were
words or part-words) were preferred to other candidate units while respecting the other con-
straints of the model. When the standard parameters used in Perruchet and Vinter (1998)
were applied, ceiling effects were observed. When forgetting was progressively increased
until ceiling effects disappeared in all conditions, the pattern of results obtained by PARSER
reproduced the main effects observed for human participants.’

Below we examine whether other models of word segmentation can simulate these
results. We then discuss the implications of our study for natural language processing, by
considering word segmentation and more general aspects of early language acquisition.

4.2. The computation of transitional probabilities

Certainly, the prevalent view on word segmentation is based on the suggestion by Saffran
et al. (1996; see also Aslin et al., 1998) that boundaries between words can be found
through the exploitation of transitional probability. Participants would exploit the fact that,
on average, the transitional probabilities between word internal syllables are stronger than
the transitional probabilities between syllables spanning word boundaries. This view fits
well with the widespread use of Simple Recurrent Networks (SRN, e.g., Christiansen, Allen,
& Seidenberg, 1998; Elman, 1990;) to simulate segmentation processes. The use of more
sophisticated measures of statistical association has been suggested too, in particular by
Swingley (2005).

Most researchers investigating the role of statistics fully acknowledge that word segmen-
tation may be influenced by other, independent factors (e.g., Aslin et al., 1998; Gomez,
2007; Seidenberg & MacDonald, 1999; Thiessen & Saffran, 2003). The crucial point, how-
ever, is that the way statistical computations combine with other cues is not constrained by
these models and can be construed ad lib in quite divergent ways.

Concerning the effects of contextual factors, the role of knowing some words of the lan-
guage in the discovery of others has never been integrated in word segmentation approaches
involving statistical computation. A transitional probability, for instance, is a value inherent
to a pair of syllables, which does not depend on whether the local context in which this pair
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of syllables appears is known by the learner. As asserted by Dahan and Brent (1999), ‘‘tran-
sitional-probability computations do not take into account the segmentation points in previ-
ous utterances; in other words, having isolated some words does not help in isolating other
words or even the same words later on’” (p. 166).

Concerning the influence of IWL, the situation is different. The relation between statisti-
cal structure and prosodic or phonological information—a part of what has been subsumed
above under the term IWL—has been often envisioned, but, importantly, in very different
ways. The action of different cues can be thought of as being mediated by independent pro-
cesses, which would operate in parallel. Statistical computations would be blind to the per-
ceptual properties of the material. This is the view advocated by Shukla et al. (2007), at
least with regard to prosody. The authors suggest that transitional probability computations
(or other forms of statistical computation) over syllabic representations of speech rely on
encapsulated, automatic processes, which proceed irrespective of the prosodic break-points.
Prosody would act subsequently as a filter, suppressing possible word-like sequences that
straddle two prosodic constituents. Another possibility is that statistical learning is
“‘guided’’ by the initial perceptual biases. It has long been claimed that the exploitation of
statistical regularities needs to be constrained by external factors. The acoustical properties
of the speech flow could serve as such constraints (e.g., Gomez, 2007; Onnis et al., 2005;
Saffran, 2002; Seidenberg & MacDonald, 1999). Still another view is that statistical compu-
tations would be performed on representations that embed prosodic or phonological infor-
mation. Curtin et al. (2005), for instance, suggest that stressed and unstressed syllables with
the same segmental content could be considered as different primitives for the computation
of transitional probabilities.

To sum up, approaches based on the assumption that learners perform some kind of
statistical computation generate no specific prediction regarding the effects of contextual
and perceptual cues.”*

These effects can only be accounted for a posteriori, by postulating the existence of addi-
tional, independent processes. Two earlier studies, which compared PARSER and connec-
tionist models with regard to their ability to account for other variables influencing learning,
also lead to the conclusion that connectionist models would require specifically designed
modifications in conditions where the standard version of PARSER simulates the behavioral
data patterns. Perruchet and Desaulty (2008) showed that participants were able to learn the
words from an artificial language when the only available cues were backward transitional
probabilities. The authors showed that PARSER accounts for this ability, while an SRN is
only sensitive to forward transitional probabilities. Likewise, Giroux and Rey (2009) tested
the predictions of SRN and PARSER in a situation where the recognition of words and sub-
lexical units were examined after 2 or 10 min of exposure to an artificial speech stream.
Both models predict similar performance on words and sublexical units after 2 min. How-
ever, only PARSER predicts better performance on words relative to sublexical units after
10 min. Performance of human participants were consistent with PARSER’s predictions. In
both studies, PARSER accounted for the data without any change to the original version of
the model (Perruchet & Vinter, 1998), even though this version was obviously not designed
to deal with these situations. It is likely that a connectionist model would be also able to
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simulate these data, but, in contrast with PARSER, this achievement would need ad-hoc
algorithmic modifications.

4.3. Brent’s INCDROP and the MDL-based models

In Brent’s INCDROP model (Brent, 1996; Brent & Cartwright, 1996), as in PARSER,
the segmentation of a new syllable sequence is dependent on the units stored in the lexicon.
If there is no possible mapping between some part of the sequence and the stored units, the
whole utterance is stored in memory as a single unit. Otherwise, the familiar units are
exploited to extract new potential units from the utterance. The choice between different
possible segmentations of an utterance is construed as an optimization problem. The princi-
ple of the method is akin to establishing a list of the possible segmentations of a given utter-
ance (although the authors used computational tools that prevented the program from
proceeding in this way). The choice between possible segmentations is then made in order
to fulfill a number of criteria. These criteria are threefold (according to Brent, 1996): mini-
mize the number of novel words, minimize the sum of the lengths of the novel words, and
maximize the product of the relative frequencies of all the words. The process of optimiza-
tion is performed thanks to a statistical inference method, called the MDL method. Other
models of word segmentation also rely on MDL-based algorithms (e.g., de Marcken, 1996;
see also the MDLChunker model by Robinet & Lemaire, 2009), often within a Bayesian
framework (e.g., Brent, 1999; Goldwater, Griffiths, & Johnson, in press).

INCDROP bears several striking similarities with PARSER. In contrast to models based
on the computation of transitional probabilities, these two models posit the primacy of
chunks. MDL methods exhaustively examine all possible partitionings of the corpus, while
PARSER relies on the variety generated by successive random drawings to provide provi-
sional chunks, but this difference can hardly be thought of as a crucial one. In both models,
the segmentation problem is solved by some direct competition between different possible
chunks, instead of being an inference on a continuous distribution of probabilities over syl-
lables. As PARSER, INCDROP has the capacity of accounting for the action of multiple
cues. The optimization algorithm makes the model sensitive to the statistical structure of the
speech, and the power of lexically driven segmentation is fully exploited. In addition, the
influence of IWL can be easily implemented. For instance, in Brent and Cartwright (1996),
the choice between possible segmentations takes account of certain phonotactic constraints
in English words. Finally, it is highly likely that INCDROP would be able to account for the
recent results outlined above, without major changes. For instance, there is no principled
reason for an MDL-based model to be limited to the exploitation of forward transitional
probabilities and hence, INCDROP would be certainly able to account for the results of
Perruchet and Desaulty (2008). Likewise, Robinet and Lemaire (2009) show that their
MDLChunker model, which relies on the same basic principles as INCDROP, is able to
reproduce Giroux and Rey (2009)’s effect, which was initially taken as a support for PAR-
SER.

To sum up, although further studies would be necessary to confirm this assertion, it seems
rather difficult to separate PARSER from the MDL-based models with regard to their
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explanatory power (as revealed in current empirical studies). If there is no easy way to dis-
tinguish between models on empirical grounds, on which alternative bases may rely a pref-
erence judgment? A common test-bed for choosing between theories that are equally
consistent with the data relies on the principle of simplicity or parsimony (e.g., Chater &
Vitanyi, 2003). However, this principle has been claimed to be at the core of the motivation
underpinning both PARSER and MDL-based models. PARSER instantiates the parsimony
principle at the level of the psychological processes engaged by the learner to cope with a
given material. To meet this objective, it avoids introducing ad-hoc mechanisms and pro-
cesses and construing the properties of the description of the data as a driving force. In con-
trast, MDL-based models instantiate the parsimony principle at the level of the description
of the data. They privilege the more economical description of the data patterns, without
considering the complexity of the algorithms the learners have to use to discover this mode
of representation.

Rather than speculating on the more relevant implementation of parsimony—which can
be seen as a matter of opinion—we would like to briefly discuss the following observation:
Applying the principle of parsimony to the learner’s abilities or to the learner’s final repre-
sentation of the data leads to the same outcome, at least for word segmentation. Worthy to
note, this is a logical consequence of the models’ organization. In a nutshell, MDL-based
models select the mode of segmentation that generates the minimum number of different
words. The crucial point is that for a fixed corpus, aiming for a minimum number of differ-
ent words maximizes the number of repetitions of each word. PARSER exploits this logical
corollary, relying on the fact that selecting the more frequent words among a set of candi-
date units is the natural by-product of ubiquitous laws of forgetting. Extracting the more fre-
quent units of a corpus naturally leads PARSER to describe this corpus with the minimum
number of different words.

4.4. Implications for understanding word segmentation

Investigating and modeling word segmentation in artificial languages are obviously
aimed at improving our understanding of natural language acquisition. Regarding IWL,
one may wonder about the adaptive value of the effects evidenced in our study. In com-
parison to the segmentation of unbiased words, the segmentation of positively biased
words is facilitated, but the segmentation of negatively biased words (i.e., words for
which their combination generates positively biased part-words) is impeded roughly to
the same extent, if not more (as shown in Fig. 1). This might suggest that these opposite
trends cancel each other out. However, this would be true only if there were as many
negatively biased words as positively biased words in natural languages. This is quite
unlikely. As far as first language acquisition is considered, phonological and prosodic
features generally provide a reliable starting point, because most of them are themselves
learned through language exposure. Thus, their positive consequences should, on average,
largely exceed their negative ones. Note that the positive interplay of statistical and per-
ceptual factors for segmenting the words of natural languages has been emphasized
earlier (e.g., Swingley, 2005).
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Our result showing the exploitation of known words for discovering new words provides
a further innovative contribution. Although unbiased items were identical in the two groups
of participants, they were learned better when they were mixed with positively biased items
than when they were mixed with negatively biased items. The exploitation of already-
known words might be considered as a somewhat peripheral effect, just being able to
account for some occasional fine-tuning. We argue that this view is faulty, for at least two
reasons. First, being exposed to a language in which all words are new (as in laboratory con-
ditions) is certainly quite exceptional in real-world settings. As a consequence, if learners
are actually able to benefit from known words, this ability could be exploited in an over-
whelming proportion of utterances. Second, exploiting already known words could be more
than an optional complement to other mechanisms, but it could be rather essential for the
full achievement of word discovery. Indeed, neither statistical nor perceptual factors can be
construed as decisive when considered in isolation. The joint consideration of the two cate-
gories of cues certainly improves performance considerably (e.g., Onnis et al., 2005), but it
does not lead to perfect performance. This is a logical consequence of the fact that both cat-
egories of cues are based on probabilistic information. What about the words that fit neither
with statistics nor with the dominant prosodic or phonological patterns of the language? Our
response is that they may be easily learned, because learners use the information provided
by the surrounding words (i.e., the contextual information).

Our final claim is that to be fully understood, the investigation of word segmentation
needs to consider the dynamical interplay between (at least) the three sources of information
we have investigated in this study. This claim could suggest that a full theoretical account
of word segmentation would require a number of unrelated mechanisms, each of them
devoted to exploit a specific part of the available information. Our modeling approach pro-
vides a more parsimonious solution. A simple, unified model can account for the dynamic
interplay between the statistical structure of the ongoing input, the IWL of parts of the
speech flow, and the contextual information provided by the earlier emergence of other
word-like unit. Note that we are not arguing that this model, PARSER, such as currently
implemented for the processing of miniature languages composed of a small set of syllables,
would be able to extract all words from a natural language. PARSER was not aimed at pro-
viding a realistic, full-scale model of word segmentation. Our objective was rather to show
that the basic principles of associative learning and memory (on which PARSER relies) are
able to account for the overall dynamics of word extraction, without introducing any ad-hoc
mechanisms or specialized modules.

4.5. Toward a generalization to early language acquisition

Word extraction from a syllabified input is itself just one component of early language
acquisition, and the question arises of whether the conclusions reached for this particular
step of processing, and notably the explanatory power of basic principles of associative
learning and memory, can be generalized. Although any response to this question would be
premature at this stage, we wish to provide fuel for a positive response in the final part of
this study by examining the ability of PARSER to account for other parts of language
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acquisition. Indeed, the field of relevance of the PARSER model is not limited to the spe-
cific stage of language acquisition that was explored here.

Let us consider first the word-likeness of certain sequences of syllables, which was
entered into the model as preestablished knowledge. To some extent, IWL can be construed
as the end-result of earlier applications of PARSER’s principles. We have pointed out in the
introduction that the IWL of a given set of sounds could be linked to its similarity with one
or several words from the learners’ native language. As PARSER is primarily devised to
account for word formation, it is possible to conceive the discovery of these words as the end
product of PARSER’s principles. More certainly, IWL is also determined by phonological
and prosodic features, such as lexical stress placement (e.g., Creel et al., 2006; Curtin et al.,
2005; Thiessen & Saffran, 2007), which are, at least in part, dependent on the learners’ expe-
rience with their mother tongue. PARSER’s principles could be also relevant here, when this
perceptual information is integrated into the primitives that are given to the model.

Perruchet and Peereman (2004) have shown experimental and computational evidence
for this hypothesis. The authors focused on the relationship between vowel (V) and conso-
nant (C) in the terminal syllables of words as a determinant of their word likeness. Focusing
on the phonemes composing the rimes (VC) is justified by the fact that analyses of linguistic
corpora suggest that there are strong probabilistic constraints on the VC combinations of
rimes, at least in English (Kessler & Treiman, 1997) and in French (Peereman, Dubois-
Dunilac, Perruchet, & Content, 2004). Perruchet and Peereman’s experiment revealed that
VC terminal endings were a reliable determinant of how well nonwords sounded like French
words, for both children and adults. More importantly for the present concern, the authors
examined the ability of computational models to account for these results, successively con-
sidering a connectionist model (SRN; e.g., Elman, 1990) and PARSER. PARSER was a bet-
ter predictor of performance than the SRN. In particular, PARSER was sensitive to the same
measures of statistical consistency that human participants exploited to produce their word-
likeness judgments. Of course, we are not claiming that all determinants of IWL are shaped
by PARSER-like processes, and further research is required to examine the extent to which
Perruchet and Peereman’s conclusions may be generalized, but there is no a priori reason to
anticipate that rimes would be a particular case.

Let us examine now how the principles on which PARSER is grounded may also be rele-
vant for some steps of processing that follow word extraction. In the line of Saffran et al.
(1996) studies, our present experiment investigated how listeners create units composed of
sound sequences. In natural settings, a further step of processing consists in mapping the
sound sequences to their referents. It may be argued that the relation between a word and its
referent is a form of association and, hence, that a model able to learn associations, as PAR-
SER is, is well suited to achieve such a mapping. This associative view has been criticized
on the ground of the indeterminacy of the referent in concrete situations, and various spe-
cific constraints have been proposed to solve the indeterminacy problem. Perruchet and
Vinter (2002, Section 4.2; see also Perruchet, 2005) have suggested how PARSER’s logic,
when extended to the word-referent mapping, could offer a solution without postulating
multiple constraints. In the same line, Smith and Yu (2008; see also Yu & Smith, 2007)
have recently provided experimental evidence supporting the view that statistical learning
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could underpin word-referent mappings. They showed that infants are able to exploit the sta-
tistical information embedded in a set of individually ambiguous scenes to map words to
their referents. Interestingly, they refer to our approach of word segmentation when they
note that

statistical learning need not be the result of highly specialized statistical learning
mechanisms (e.g., Perruchet & Vinter, 1998). The learner could solve this learning
task via simple (...) associative learning mechanisms. Across trials, the learner could
accumulate associations between words and potential referents by strengthening and
weakening associative links with each co-occurrence or non-co-occurrence. (Smith &
Yu, 2008, p. 1566)

Looking one step further, PARSER is not necessarily limited to the word level. It has
been successfully applied, with only minor parametric adjustments, to multiword units (e.g.,
the transcoding of numbers from their verbal to their digital forms, Barrouillet et al., 2004)
and to the learning of finite-state grammars (Perruchet et al., 2002; Pothos, 2007). This brief
outline (see Perruchet & Vinter, 2002; for a more developed account) is sufficient to make
our point: PARSER is not limited to the formation of word-like units from syllabic primi-
tives. Its area of relevance goes from the subsyllabic level (Perruchet & Peereman, 2004) to
rudiments of syntax (e.g., Perruchet et al., 2002), and it may be easily generalized to the fun-
damental issue of word-referent mappings (Smith & Yu, 2008). By illustrating this property
of PARSER, we do not intend to pinpoint an advantage that would be specific to this model.
Extensive domains of application and generality have been reported also for other models,
such as connectionist models and MDL-based models (see for instance de Marcken, 1996,
regarding some aspects of syntactic structure). Our intent was rather to provide a significant
support to the idea that general, all-purpose processes such as those implemented in
PARSER are able to account for a larger part of early language acquisition than once
thought.

Notes

1. It could be argued that the model is a priori irrelevant for word segmentation, because
it is based on the attentional processing of the ongoing information while word seg-
mentation would be an automatic or implicit form of learning. Many studies have
investigated the role of attention in statistical/implicit learning, and there is growing
consensus that this form of learning requires attention (for a review, see Perruchet,
2008). There is no principled reason to think that segmentation studies in the line of
Saffran et al. would differ from other implicit learning paradigms in this respect.
Observing learning under dual-tasks conditions (as for instance in Saffran et al., 1997)
does not imply the existence of a nonattentional form of learning, because the second-
ary task may not deplete the attentional resources completely. Moreover, the conclu-
sion according to which the discovery of relevant units requires attention as any other
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forms of learning has been supported by studies using continuous speech flow (Toro
et al., 2005) and visual shapes (e.g., Baker et al., 2004; Turk-Browne et al., 2005).
Decay and interference are two different ways for simulating forgetting. Interference
refers to specific (retroactive) interference, that is, to the detrimental effect of process-
ing items similar in some ways to stored memories. A decay parameter was introduced
to simulate the fact that the memory for any item tends to decrease over time, even if
there is no specific interfering event in the subsequent input. However, the model
makes no claim about the existence of a genuine decay process. Decay may be thought
of alternatively as nonspecific interference.

Given that IWL was hand-coded in the model, its effect on word discovery could be
thought of as self-evident. However, if attributing positive IWL to a set of syllables
would have led to endorse this set of syllables as a word through a direct link of cau-
sality, the part-words would have been mistakenly identified as words when PARSER
processed the language played to Group IWL—, given that for this group, the posi-
tively biased units were the part-words. In contrast with this prediction, PARSER (as
human participants) was successful in discovering the words.

As an aside, it is worth adding that PARSER exploits the statistical structure of the
material as well as specially designed computational models. Hunt and Aslin (2001)
wondered about the ability of PARSER to discover words in a frequency-balanced
task. They pointed out that Perruchet and Vinter (1998) did not model the experiment
by Aslin et al. (1998), in which infants learned the word of a language in which fre-
quency was controlled, presumably exploiting transitional probabilities between sylla-
bles. Although it is correct that Perruchet and Vinter did not address the issue, it
would be incorrect to claim that PARSER is unable to account for Aslin et al.’s
results. In fact, PARSER, without any ad-hoc modification of the original algorithm,
is sensitive to more sophisticated measures of association than raw frequency, includ-
ing transitional probability, and moreover bidirectional measures of association. This
somewhat surprising ability is due to the fact that forgetting is simulated by both
decay and interference, as spelled out elsewhere (Perruchet & Desaulty, 2008; Perru-
chet & Pacton, 2006; Perruchet & Peereman, 2004).
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Appendix A

Appendix Table 1 shows the items used during the forced-choice test for the participants
of Groups IWL+ and IWL-. Italicized items are the words heard during the familiarization
phase.

Regarding biased items, the trisyllabic words for the Group IWL+ were identical to the
trisyllabic part-words for the Group IWL—, and they were the same for all participants of
each group. The part-words for the Group IWL+ and the words for the Group IWL— differed
as a function of whether the number of the participant was even or odd. The difference was
related to the generation of part-words (given the words ‘*‘ABC’’ and ‘‘DEF’’, part-words
can be either “‘BCD’’ or ‘‘CDE’’). The bisyllabic items used during the test also differed as
a function of the parity of the number of the participant (given the word ‘*‘ABC,’’ bisyllabic
subcomponents can be either ‘*‘AB’’ of “‘BC”’).

Regarding unbiased items, they were the same for two coupled participants from Group
IWL+ and Group IWL—. However, the syllables were randomly permutated for each new
pair of participants. The table presents the specific words and part-words heard by Partici-
pant 1 (#odd) and Participant 2 (#even) of each group. The differences again pertained to
the mode of partitioning of the words.

Appendix B

PARSER is centered on a single vector, known as Percept Shaper (PS). PS is composed
of the internal representations of the displayed material and may be thought of as a memory
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Appendix Table 1

Group IWL+ Group IWL-

Item N# Even N# Odd N# Even N# Odd

Status Word Part-word Word Part-word Word Part-word Word Part-word
befoki kipuli befoki fokipu kipuli pulidu fokipu pulidu
befoki dutara befoki liduta kipuli taraga fokipu taraga
befoki gabefo befoki ragabe kipuli befoki fokipu befoki
pulidu kipuli pulidu fokipu dutara pulidu liduta pulidu
pulidu dutara pulidu liduta dutara taraga liduta taraga
pulidu gabefo pulidu ragabe dutara befoki liduta befoki
taraga kipuli taraga fokipu gabefo pulidu ragabe pulidu
taraga dutara taraga liduta gabefo taraga ragabe taraga

Biased taraga gabefo taraga ragabe gabefo befoki ragabe befoki

foki kipu befo kipu kipu lidu kipu puli
foki duta befo duta kipu raga kipu tara
foki gabe befo gabe kipu foki kipu befo
lidu kipu puli kipu duta lidu duta puli
lidu duta puli duta duta raga duta tara
lidu gabe puli gabe duta foki duta befo
raga kipu tara kipu gabe lidu gabe puli
raga duta tara duta gabe raga gabe tara
raga gabe tara gabe gabe foki gabe befo
3evyds dEsone 3¢€l6d€ 16dgvy 3evydE dEsone 3¢€l6dE 16dgvy
3Evyde maketi 3€l6dE sotikg 3EvydE makaeti 3€l6dE sotikg
3evydE 163evy 3€l6dE mane3e 3evydE 163evy 3€l6dE mane3e
sonemd  d€sone vysoti l6dgvy sonema d&sone vysoti 16dgvy
sonema  maketi vysoti sotikg sonema maketi vysoti sotikg
sonema  103evy vysoti mane3e sonema 163evy vysoti mane3e
kotilo désone komane 16dEvy kotilo désone komane 16dEvy
kotilo maketi komane sotikg kotilo maketi komane sotikg

Unbiased kotilo 16zevy komane maneze kotilo 16zevy komane maneze
kA d&so 3€ld dévy 2Zevy d€so 3€ld dévy
3Evy mako 3cld tiko 3Evy mako 3€lo tikg
3Evy 163¢ 3¢ld ne3e 3Evy 16z¢€ 3€ld ne3e
sone déso Vyso dévy sone d€so vyso dévy
sone makg Vyso tike sone maka Vyso tikg
sone 163¢ Vyso ne3e sone 163¢€ Vyso neze
kati déso kema devy kati d€so kema devy
kati makg kema tikg kati mako kema tikg

kati 163¢ kema neze kati 163¢ kema neze
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a Select randomly the Decay

size of the next percept g (all units of the Percept Shaper)
(1, 2, or 3 shaping units) and interference

(selective)
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to this unit
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b Does this percept Add weight
match with a unit below the {0 thisiunit
shaping threshold? YES and to its 2 or 3 components

c lNO d

Create this percept
as a new unit

Assign a weight
to the new unit
and add weight to its 2 or 3 components

A 4

Appendix Fig. 1. Operations performed by PARSER at each time step.

store or a mental lexicon. A weight, which reflects the person’s familiarity with the item, is
assigned to each element in PS. At the start of the familiarization session, PS contains only
the primitives needed for the processing of the material (here, the syllables; for the reasons
to consider syllables as processing primitives, see, e.g., Swingley, 2005). At the end, it
should contain, in addition, the structurally relevant units that form the material (here, the
words).

The way the words are built in PS during training is described in the flowchart in Appen-
dix Fig. 1. Let us consider how the flowchart works for a language composed of six trisyl-
labic words, befoki, pulidu, taraga, maneso, vujedin, and tilonke. Let us assume that the
sequence begins with taragavujedinbefokitaragapulidu.... The string is first segmented into
small and disjunctive parts. In PARSER, the multiple determinants of this initial parsing are
simulated by a random generator, which selects the size of the next percept within a range
of 1-3 units (Appendix Fig. 1, step a). Suppose the random generator provides 2, 3, 2, 3,
and 1 in the first five trials. As a consequence, the first percepts would be tara, gavuje, din-
be, fokita, and ra. Because none of the first four percepts is present in PS (step b), they are
created as new units (step ¢) and assigned a weight (step d). Also, the weights of the compo-
nents, fa, ra, ga, and so on, are incremented. The fifth percept, /i, matches a primitive and
hence is already represented in PS. Its weight is also incremented (step f).

At each time step (a time step is defined by the processing of a new percept, that is, by one
cycle in the flowchart in Appendix Fig. 1), the units forming PS are affected by forgetting
and retroactive interference (Appendix Fig. 1, step g). Forgetting is simulated by decreasing
all the units by a fixed value. Interference is simulated by decreasing the weights of the units
in which any of the syllables involved in the currently processed unit are embedded. In the
case described here, interference occurs for the first time while fokita is perceived. Indeed,
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Appendix Table 2
Changes in constituents of Percept Shaper during one time step

Processing Components
(Add Weight, Interference)

Initial Weights Creation ki tara ga Forgetting Final Weights

(D @) 3 4 )] (6) (7 3
ta 3.50 —0.005 -0.05 3.445
ra 3.10 —0.005 —-0.05 3.045
ki 2.55 +0.5 -0.05 3.00
be 2.50 -0.05 2.45
fo 2.50 -0.05 2.45
vu 2.45 -0.05 2.40
ga 2.40 +0.5 -0.05 2.85
je 1.70 -0.05 1.65
tara 1.58 +0.5 -0.05 2.03
du 1 -0.05 0.95
dufoki 1 -0.05 0.95
kitaraga — 1 1

Note. In this example, the changes are due to the perception of kitaraga, when ki, tara, and ga are existing
units of the system.

ta is already present in an old unit in PS, fara. In consequence, the weight of trara is
decremented when fokita is perceived (in addition to the decrement due to forgetting).

In this early phase, perception is driven by the initial primitives of the system, namely the
syllables. However, the psychological principles implemented by the model stipulate that a
representation created during learning may become able to guide perception, as the initial
primitives were. The condition for an element of PS to shape perception is that its weight is
at least equal to a threshold value. In contrast, when the frequency of perceiving a given ele-
ment is not high enough to counteract the effects of forgetting and interference, this element
is removed from PS when its weight becomes null.

In the reported simulations, the starting weight given to any created unit was set to 1. The
primitives that formed PS before training were also assigned a weight of 1. The increment
received by an old unit in PS when this unit serves to shape perception was set to 0.5. The
decrements due to forgetting and interference were set to 0.05 and 0.005, respectively, for
the first simulation (forgetting was increased for subsequent simulations, see main text). The
last parameter, namely the threshold above which a unit is able to shape perception, was set
to 1.

Let us assume that after having processed a small part of the language, the content of PS
and the weight of each unit are as shown in Appendix Table 2, columns 1 and 2, respec-
tively (units with a weight lower than 1 are not reproduced here). Let us also assume that
the continuation of the sequence is kitaragapulidu..., and that the random generator
(Appendix Fig. 1, step a) determining the number of units embedded in the next percept
provides a value of 3. Perception would be shaped by the three units ki, tara, and ga.
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Because kitaraga does not match a unit that has a weight below the shaping threshold (step
b), this percept is created as a unit in PS (step c) and assigned a weight of 1 (step d; see
Appendix Table 2, column 3). In addition, the components forming kitaraga receive an
additional weight of 0.5 (Appendix Table 2, columns 4, 5, and 6). Note that fara is incre-
mented, in keeping with the fact that it is an autonomous component of the percept kitaraga,
but not its primitive parts ta and ra, which do not share this status. On the contrary, tara
interferes with fa and ra and, in consequence, the weights of these units are decremented by
0.005. Finally, all the units in PS are decremented by 0.05 to simulate forgetting (Appendix
Fig. 1, step g; see Appendix Table 2, column 7). The rightmost column of Appendix
Table 2 displays the state of PS after kitaraga has been processed.



