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Experiment 1 was devised to distinguish, in a given set of features composing
drawn robots, those whose vatiations were related a priori for participants from
those whose variations were a priori independent. In Expt 2, correlations were
experimentally induced berween « priori-related features for one group of
participants (pre-primed group), and berween a prisri-independent features for
another group (arbifrary group), in incidental learning conditions. A subsequent
transfer phase revealed that participants’ performances were sensitive to ex-
perimentally induced correlations in both groups. However, only the performances
of the pre-primed group accurately matched the predictions of a statistical model
devised by K. Richardson (e.g. Richardson & Carthy, 1990), postulating the
acquisition of genuine knowledge of the correlational structure. Participants’
sensitivity to arbitrary correlations appeared to be a by-product of the memory of
specific study exemplars. These results demand the reinterpretation of some prior
experimental evidence for covariation abstraction, and more generally, are
consonant with a current view of implicit learning which emphasizes the role of
specific prior episodes in complex learning situations.

There is a general consensus that learning about contingency relationships between
events is crucial for adaptive behaviour, even if its role in the attribution of causality
may be less important that was once believed (e.g. Ahn, Kalish, Medin & Gelman,
1995; White, 1995). This form of learning has been investigated in several sets of
laboratory studies, which differ on two main aspects. The first aspect pertains to the
nature, intentional or incidental, of the instructions given to participants during the
encoding of the material. In some studies, they are explicitly instructed to search for
the strength of the association between two (or more) events on which information
is provided, cither by direct exposure or through condensed information about
feature occurrence frequencies. In other studies, people are asked to process
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individual instances without regard for their relationships or, more generally,
without attempting to build any form of summary representation of the displayed
material. The second aspect is related to the test devised to assess the resulting
knowledge. Participants’ resulting knowledge about covariations is assessed cither
by direct rating of the strength of the relation, or through petformance in a task
specially designed to be sensitive to this form of knowledge, but which does not
require any form of explicit retrieval. Most studies involve both intentional learning
instructions and direct assessment of covariation knowledge (for a review, see Alloy
& Tabachnik, 1984). The present paper is rooted in the opposite approach, which is
intended to match natural conditions more closely. In this approach, participants
receive incidental instructions during the encoding session, then perform a task
which measures covariation knowledge indirectly.

Prior studies involving these conditions paint a contrasting picture. On the one
hand, some authors report that individuals were able to abstract covariations in
incidental learning conditions, even though these covariations were made difficult to
detect due to the inherent complexity of the situation (e.g. Berry & Broadbent, 1988;
Kushner, Cleeremans & Reber, 1991; Lewicki, 1986; Richardson & Carthy, 1990;
Younger & Cohen, 1985). On the other hand, several other studies have failed to
observe incidental covariation abstraction (e.g. Wattenmaker, 1991, 1993). It is
worth noting that some initial evidence favouring incidental covatiation detection
has been reinterpreted in other terms. For instance, Perruchet (1994) proposed and
validated an alternative account of the Kushner e# a/. (1991) data, which does not
involve the powerful abstractive mechanisms involved in the original interpretation.
The present paper is aimed at a similar reappraisal, but concerns the work carried out
in K. Richardson’s laboratory (Richardson, 1986, 1987; Richardson & Carthy, 1989,
1990), work which represents one of the most cogent demonstrations of incidental
covariation learning provided to date.

In Richardson’s studies, participants are first asked to study and remember a set
of pictures representing robots, houses or schematic faces. These stimuli differ with
respect to three (exceptionally, four) variables (for instance, in the case of robots: the
length of the arms, the size of the body and the size of the head). Each variable has
three possible values, which are typically small, medium and large. Participants are
exposed to a set of exemplars which instantiate a moderately high level of covariation
between these variables. In a subsequent test phase, participants are shown the full
set of instances which may be generated by the exhaustive combination of variable
values, and are asked to make recognition (e.g. Is this robot a member of the
previously viewed set?) or typicality (Is this robot representative of the previously
viewed set?) judgments for each of them.

Participants’ scores are compared with the values predicted by a covariation
coding model, based on the application of log-linear statistics. The method of
computation is described at length in all the Richardson and associates studies, and
it will not be reproduced here in order to save space. For the purpose of this paper,
it suffices to point out that a log-linear model allows for the simulation of the
performance of an individual who would have abstracted the covariations embedded
in the study material, and would make recognition or typicality judgments on the
sole basis of this relational information. As regards recognition judgments, for
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instance, the covariation coding model predicts a tendency to make false recognitions
of new items respecting the correlational structure, and likewise, to fail to detect old
items which violate this structure. The values predicted by the covariation coding
model were found to fit participants’ observed performance fairly well, with
Pearson’s 7 between predicted and observed values falling within the range .50-.70,
depending on experiments and conditions. According to Richardson, these findings
demonstrate that people abstract knowledge about covariation among variables
while studying exemplars and use this abstract knowledge in subsequent recognition
or typicality judgments.

In a previous paper, we (Perruchet, Pacteau & Gallego, 1993) pointed out that the
validity of the inference Richardson draws from the good predictive power of the
covariation coding model rests on the postulate that a concurrent model cannot
account for observed performance better than, or at least as well as, the covariation
coding model. Indeed, Richardson deals with two other models, based on the notions
of prototype representation and independent feature frequency, respecrively. He
shows that these concurrent models fail to explain a substantial part of the
performance variance. However, Richardson does not deal seriously with another
class of models that have potential relevance here: the ‘instance-based’ or ‘exemplar-
similarity” models, initially propounded by Brooks (1978) and Medin & Shaffer
(1978) in the field of categorization. Briefly, the idea underlying these models is that
individuals store each of the studied exemplars in memory, without making any
condensation into a small amount of information, such as the occurrence frequency
of individual or composed features. In the test phase, participants would perform
recognition or categorization judgments of test items on the basis of their degree of
similarity with specific individual instances (e.g. Brooks, 1978), or with a weighted
average of all instances stored in memory (e.g. Medin & Shaffer, 1978). These
judgments turn out to be sensitive to correlated features as a by-product of the use
of analogies with instances in which the correlations of interest are embedded.

Reanalysing Richardson’s data, Perruchet ef a/. (1993) demonstrated that a very
simple exemplar-similatity model was as powerful as the Richardson covariation
coding model in accounting for recognition or typicality judgments. However, they
also demonstrated, through the running of hierarchical multiple regression analyses,
that the covariation coding model still accounts for a reliable part of variance in
performance when predictions of the exemplar model are partialed out, hence
suggesting that the apparent sensitivity to covariation cannot be considered only as
the by-product of the memory for specific exemplars.

Before concluding that covariation knowledge is abstracted during the ex-
perimental session, as did Richardson and collaborators, it is worth examining yet
another counter-argument. This counter-argument stems from the fact that, in most
of Richardson’s studies, the to-be-abstracted relations bear on the size of the different
components of the study items. More precisely, the best exemplars of the concepts
are those in which the different components—arms, head and body for the
robots—are of the same relative size (all small, all medium, or all large). The point
is that this kind of dimensional covariation is ubiquitous in everyday subjective
experience. Using a principle which is a part of the participant’s background
knowledge to structure study items makes it unclear whether he or she learns
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anything from the study exemplars. Indeed, there is overwhelming evidence that
participants with strong expectancies for covariations berween events overestimate
the contingency between them, a phenomenon known as covariation bias. A special
case of covariation bias consists in the report of a correlation even though data are
in fact statistically independent, as illustrated in the classic Chapman & Chapman
(e.g. 1969) experiments on illusory correlations in clinical judgment, and a number
of other studies (e.g. Murphy & Wisniewski, 1989). In the cases under scrutiny here,
it is possible that judgments were biased by an a priori expectancy, regardless of the
effective relationships between the displayed events.

The experiments reported here were undertaken to test the hypothesis that
participants would no longer exhibit sensitivity to covariation in a conceptual
replication of Richardson’s experiments using variables covarying along dimensions
other than that of size. Operationally, this hypothesis states that when other variables
are used, a covariation coding model would have no additional predictive value
beyond exemplar model predictions, if both models are entered together as
predictors in hierarchical multiple regression analyses. However, some unexpected
results led us to enlarge the scope of this initial framework. Briefly, Expt 1 showed
that the contrast between size and other variables is a rough and misleading
approximation of 2 more general contrast between variables whose intercorrelations
may be respectively qualified as  pre-primed” and “truly arbitrary’. Experiment 2 was
designed to explore the relevance of this distinction when investigating the
participants’ ability to abstract covariations between experimental variables in
incidental learning conditions.

EXPERIMENT 1

The first experiment aimed to verify that variables differing along a size dimension
convey an a priori knowledge about their covariations, while other variables are not
similarly biased. This experiment involved pictures of robots differing from one
another along six ordinal, three-level variables. Half of these were size variables:
head size, leg size and arm size. The other variables were the orientation of the
antenna (slightly, moderately or very bent), the density of the body’s texture (high,
medium and low density) and the gap berween the eyes (small, medium and large).
Figure 1 shows all of the possible variations.

A first possibility would have been to ask participants for a direct assessment of
the expected correlations between all possible pairs of features. The experiment
would have tested, in fact, whether their intuitions matched experimenters’ intuitions
about natural covariations. However, this direct measure appeared ill suited for our
final objective, namely the indirect assessment of covariation knowledge induced
through the exposure to correlated events. We thus devised an original method
allowing background knowledge about covariations to be indirectly evaluated.

The rationale of the method is introduced here by examining the case for arms and
legs. Let us consider a reference robot, and two test robots with longer arms than the
reference robot, but differing in terms of leg size; specifically, one has longer legs,
and the other shorter legs, than the reference robot. Participants are asked to judge
which of the test robots looks more like the reference robot using a continuous scale
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Figure 1. This figure illustrates the variations introduced in Expt 1. The robot on the left has a small
head, large legs, small arms, a slightly bent antenna, high density texture and a large gap between the
eyes. The robot on the right has the opposite features, and the robot in the centre possesses the

intermediate values for each feature. d{/ ()_j /

on which the end-points represent, at one end, the most marked choice of the short-
legged robot (arbitrarily coded 0) and at the other end, the most marked choice of
the long-legged robot (coded 100). The participant may give a score of 60, for
instance, hence indicating that the test robot with long legs tends to be judged as
more similar to the reference robot than the test robot with short legs, when both
test robots have long arms. This rating in itself is uninformative about covariation
knowledge, because the choice of long rather than short legs may stem from reasons
unrelated to the arm length. The proper evaluation involves a comparison between
this first rating and a second one, performed in similar conditions, except that both
test robots now have shorter arms than the reference robot. Let us suppose that the
participant rates 40 on the similarity scale in this condition, hence indicating that the
test robot with long legs now tends to be judged as less similar to the reference robot
than the test robot with short legs. A genuine quantitative estimate of the « priari
knowledge about relationships between the two variables at hand is given by the
difference between the two evaluations. A null difference would attest to a lack of
association. Here, the 20-point difference, pending statistical confirmation, indicates
that our fictitious participant tends to be sensitive to a positive relation between arm
size and leg size.

Experiment 1 applied this procedure for all possible ordered pairs of variables.
Participants were presented with a succession of frames comprising one robot of
reference and two test robots. The robot of reference had intermediate values for the
six variables (and was hence constant throughout the frames). On each frame, the test
robots differed from the reference robot on two of the six variables. One of these
(hereafter referred to as the context variable) was common to the two test robots,
and the other (henceforth the target variable) differed. Participants had to judge on
a continuous scale which of the test robots ‘looks more like’, or “fits better with’,
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the reference robot. For each context/target variable pair, the measure of interest was
the difference between ratings on the target variable induced by the change in the
context variable.

Method
Participants

Twenty-seven third-year university students majoring in psychology served as participants, in partial
fulfilment of a course requirement.

Materials

The robots were displayed on a black and white CRT screen with a resolution of 480 x 640 pixels, in
the spatial arrangement shown in Fig. 1. The reference robot was at the centre, and the test robots were
located alongside and slightly downwards. The robots varied in height from 4.4 to 6.5 cm, and all were
4 em in width. For all variables except body texture, the intermediate values (hereafter: 2) were set at
the centre of the end values (hereafter: 1 and 3), as measured in pixels for head, arms, legs and eye lags,
and in angle units for the antenna. For the body texture, the intermediate value was chosen on the basis
of participants’ reports in informal pilot studies. Short head, arms, and legs, very bent antenna, high
density texture, and a small gap between the eyes were coded 1, and their opposite, 3.

T'he participants made their similarity ratings through the use of a joy-stick device. The on-line joy-
stick position was reported at the bottom of the CRT screen by a marker (a 0.8 em long horizontal
rectangle) moving on a horizontal scale (length: 9 em). The participants pressed one of the joy-stick
buttons when the marker was in the desired location.

Procedure

The participants were seated in front of the CRT screen of an IBM microcomputer. The frame shown
in Fig. 1 was displayed on the screen. This frame comprises the robot of reference and two test robots
that show all the variations introduced during the subsequent experiments, although these specific
robots are not used afterwards. Participants were told that they would be exposed to a series of similar
frames throughour the experiment. They were asked to judge which of the two side robots looked more
like, or fitted better with, the central robot. They were instructed to express their judgment through
the joy-stick device, by moving the marker on the scale towards the chosen robot, more or less far from
the centre of the scale according to the strength of their preference (they were informed that they could
leave the marker at the centre of the scale if they had no preference).

Participants were first given six practice trials, in which test robots differed from those used
afterwards. Sixty frames were then displayed in succession. Indeed, assessing covariation berween any
of the 30 (6% 5) ordered pairs of context/target variables involved two frames. On each frame, test
robots differed from the reference robot by their value with respect to the two variables at hand. The
value for the context variable was the same for the two test robots within a given frame (either 1 or 3),
and differed between frames, whereas the value for the target variable differed within a frame (1 and 3
on each frame).

The location of the test robots (i.¢. the assignment of vilues 1 or 3 of the target variable to the right
and left side of the reference robot) was randomized for each trial and each participant. The 60 frames
were presented in a different randomized order for each participant.

Data analysis

The scores were initially collected on a 220-pixel scale. For the sake of convenience, all scores are
reported below after being linearly transformed on a 100-point scale, with () indicating the choice of
short head, arms, and legs, very bent antenna, high density texture, and a small gap between the eyes.
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Results

The first column of Table 1 shows the mean rating by participants for each of the
target variables after averaging across the context variables. Overall, participants
found that robots with high heads, long arms, long legs, slightly bent antenna, low
density texture and a large gap between the eyes fitted better with the reference robot
than robots with the opposite features. In all cases, the mean rating departed
significantly from the centre of the scale (#5(26) > 3.63; p < .0012). Although not
directly relevant to our concern, this departure has the damaging consequence of
lowering the scores’ sensitivity to variations due to context variables by strengthening
the possibility of ceiling or floor effects.

Table 1. For cach of the target variables, the table indicates the mean rating score,
and the algebraic difference berween the rating scores obtained for the two opposite
values of each context variable

Context variables

Target Mean - —

variables rating Head Legs Arms  Antenna Texture  Eyes
Head 72.7 — 4.1 59 —0.4 —16.4* 8.2
Legs 66.4 =1.8 = 22:3* —2:7 —-59 =27
Arms 76.4 —1.4 20.4* = —5.4 =36 10.0
Antenna 63.6 —11.8 —95 0.0 = 3.6 4.1
Texture 66.4 —11.8 —16.8*% 7.3 —8.6 S —8.6
Eyes 84.5 9.6 3.2 9.5% 8.6 —0.4 —
*p < .05.

The other entries in Table 1 show, for each target variable, the algebraic difference
between the judgments collected for the two levels of each context variable (the
difference was computed as level 3 minus level 1). For a given pair of variables, two
values are provided, according to the function assigned to each variable (target and
context respectively, or the reverse). These two values occupy positions within the
matrix that are symmetrical with regard to the main diagonal. In order to obtain an
assessment of the overall correspondence between the two values obtained for each
pair of variables, it is possible to compute their correlation over the 15 (6*5/2) pairs
of variables. When computed on Table 1, the correlation is .734. However, the order
in which variables appear in Table 1 is one of 6! (720) possible orderings. The
assignment of particular differences to the upper and lower triangles of the matrix,
and the consequent value of the correlation, is an accident of that particular ordering.
We therefore computed a product moment correlation for each of the 720 possible
arrangements of the matrix, and the resulting coefficients were averaged after r to z
Fisher transformations. The mean correlation was .750 (13), p < .002, hence
indicating that pairwise relations tended to be reciprocal. It is worth adding that this
result also testifies that data are satisfactorily reliable. Indeed, because the values of
cach pair were collected in different conditions, the resulting correlation is an
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underestimation of the reliability coefficient that could have been computed if the
same measures were simply repeated.

Statistical significance of the differences reported in Table 1 was computed by
paired # tests. Where significant, the difference indicates that the judgment about the
target variable depended on the level of the context variable, hence evidencing
subjective relationship between the two variables. As expected, a reciprocal relation
between arm size and leg size was clearly apparent. As expected also, the orientation
of the antenna was not related to the other variables. However, several results were
not anticipated. Judgment on eye spacing depended on arm size, texture density was
found to be related with head and leg size, and the expected relation between head
size and other size variables did not occur.

Discussion

Despite a probable lack of sensitivity due to a departure of the mean scores from the
centre of the scale, our procedure revealed some consistent associations between
variables. However, these associations matched only partially with the expected ones.

On the one hand, some associations did occur among some variables not involving
component size. It is possible that some of these variables were in fact processed by
participants as size variables, although they were not thought of as such while
planning the experiment. For instance, the relations of eye gap with head and arm
size become meaningful if one considers that eye gap has been processed as a size
variable. The relations between some size variables and texture density are more
difficult to account for along the same lines. However, these relations are not very
surprising. In the real world, such relations arguably exist, although they tend to be
cither positive (e.g. getting closer to a picture generally increases both its size and its
density) or negative (e.g. moving away the slide projector increases the size of the
picture while decreasing its density).

On the other hand, associations between size variables, although strong in some
cases, were not found to be a ubiquitous phenomenon. It must be realized that the
material was made up of drawings of robots, that is, of artificial objects whose
appearance is highly variable. For instance, the shape and the relative proportion of
the different components are far more flexible than in representations of humans or
animals. In this context, our initial expectations regarding the covariations of the
variables defined a priori as size variables, may be judged retrospectively as
exaggeratedly simplistic.

At first glance, the fact that the relations between size variables suffer exceptions
questions our reinterpretation of Richardson’s studies. Indeed, this reinterpretation
is grounded in the postulate that all size variables involved in Richardson’s
experiments were related in @ priori participant representations. Upon further
examination, however, it appears that our reinterpretation holds true even if @ priori
associations exist only among a subset of the variables used in a given experiment.
The reason for this is that the correspondence between the observations and the
predictions from the theoretical models was assessed on a global basis, after
averaging across variables. There is no need for participants to be sensitive to
covariations between a// pairs of variables to obtain a good correspondence in
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averaged performance. Note that Richardson’s counterbalanced allocation of
component variables to formal labels (e.g. in Richardson & Carthy, 1990, Expt 1,
variable T corresponded either to head, arms or body of robots according to
participants) hampered any a posteriori analysis aimed at examining whether
participants were differentially sensitive to covariations as a function of the variables
at hand.

Although most of the pairwise relations appear to be interpretable, at least on «
posteriori grounds, there are still certain inconsistencies in the whole picture. For
instance, considering that eye gap has been processed as a size variable accounts for
its relation with arm size, but raises the question of why there was no relation with
leg size. This outcome leads us to suspect that the pattern resulting from this kind
of analysis is highly dependent on specific, superficial features of the material. This
limitation is not really detrimental to our approach, but it demands that we alter our
starting framework. Instead of contrasting covariations involving size and other
variables, the objective of Expt 2 is to compare some of the ‘pre-primed’ with some
of the ‘arbitrary’ covariations revealed in Expt 1. The distinction refers to the fact
that some variables are related to each other for participants before any exposure to
contingency relationships during the experimental session, whereas other variables
are not similarly related. This objective does not require that the association of a
given pair of variables with a particular category should be generalizable, or clearly
justified on rational grounds. The only prerequisite is that the result pattern should
be replicable for the same material, and our assessment of reliability suggests that this
prerequisite is indeed fulfilled in our experimental set-up,

EXPERIMENT 2

The general paradigm of Expt 2 is taken from that of Richardson’s studies, and more
particularly Expt 1 in Richardson & Carthy (1990). Briefly, participants were
instructed to study and remember a series of robots exhibiting moderately strong
covariations between three ordinal variables. They were then exposed to another
series of robots comprising both study and new robots, and asked for recognition
judgments.

The main new factor we introduced was the nature of the variables at hand. For

a first group of participants, the study material displayed covariations matching some

of the ‘pre-primed’ covariations revealed in Expt 1 (hereafter, the pre-primed
group). For a second group, the variables were not similarly related in participants’
a priori representations (hereafter: the arbitrary group). We hypothesized that
performance of the pre-primed group would show evidence of covariation
abstraction, hence replicating the general outcome of Richardson’s studies, whereas
performance of the arbitrary group would provide no such evidence.

A second new factor was introduced, which concerned the time constraints
imposed during the test phase. Participants were alternatively asked to make
judgments under speeded and non-speeded conditions (with order counterbalanced).
The rationale for this manipulation stemmed from the claim that performance
testifying to the presence of abstraction may be due to processes taking place during
the test phase while participants are coping with test items (e.g. Perruchet & Pacteau,

joC
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1991). In keeping with this claim, one may anticipate that participants faced with a
test robot engage themselves in the intentional search for covariation rules (through
the scanning of memorized exemplars, for instance) and then succeed in abstracting
even arbitrary covariations. The speeded test condition was devised to prevent them
from engaging in such a strategy. Indeed, the intentional searching for rules during
the test phase is presumably time consuming, and pressing participants to respond as
quickly as possible appears to be a procedure capable of impeding this mode of
processing. In a more general way, manipulating time constraints in the test phase
allows the part of the performance pattern which may be attributed to “late’ (Estes,
1986) or ‘in-line’ (Smith, 1989) processes to be at least partially separated from the
part resulting from the encoding processes at work during the study phase.

Method
Participants

Thirty-two people from the same pool as that of Expt 1 served as participants.

Materials

As evidenced by Table 1, the result pattern of Expt 1 makes it impossible to draw three covarying
variables (out of the six manipulated ones), and likewise, three variables without any a priori relations.
However, this did not raise actual problems for the purpose of the present study, because in the
paradigm of Richardson & Carthy 1990) we intended to replicate here, significant experimentally
induced covariations involved only a subset of the variables. Labelling variables I, | and K, only the
I and |” and the *J and K associations were significant, Owing to this restriction, the allocation of
‘I’ to legs, * ] to arms and ‘K to eye gap allowed for satisfactory matching between pre-primed and
experimentally induced covariations for the pre-primed group. Similarly, allocating “I” to legs, *]" to
eve gap and ‘K’ to antenna allowed for satisfactory independence between pre-primed and
experimentally induced covariations for the arbitrary group. (Incidentally, the fact that both groups
shared two out of the three variables may seem paradoxical. It must be realized that changing only one
variable changes in fact two out of the three pairwise relations between three variables, namely the ‘1
and |* and *J and K’ relations, which are those of relevance in our paradigm.) The choice of these
variables has the additional advantage of leaving aside those whose pattern of interrelations observed in
Expt 1 was found to be difficult to account for. These variables, namely head size and body texture, were
set to their intermediate values within each group.

Procedure

Participants were randomly assigned to pre-primed and arbitrary groups until the number in a group
reached 16. The groups were differentiated only by the nature of the covarying variables. For all
participants, the acquisition phase comprised six repetitions of the same set (within a group) of 18 robots
in different randomized orders. Each set consisted of nine different exemplars, each of which appeared
one, two or three times, as shown in Table 2 (frequencies of occurrence were raken from Richardson
& Carthy, 1990, Table 1). Each robot was displayed 5 s, with a 0.8 s interval between successive robots.
A short, self-paced break was introduced between successive sets of 18 robots.

Participants were told that they would be exposed to schematic drawings of robots that they had seen
previously, in order to recognize them later among similar robots. They were informed that they would
be exposed to six series with short breaks between series, and that the same robots would be displayed
on each set.

The test phase immediately followed the study phase. All 27 robots were presented twice in different
random order. Half of the participants within each group were asked to give their responses as quickly
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Table 2. Predicted and observed performances for each of the 27 test items. Predicted values are
computed for the two theoretical models tested in the paper (arbitrary units). Observed values
(percentage of old judgments) are separated according to the nature, naturally primed or truly
arbitrary, of the experimentally induced correlations

Items Predicted values Observed values
Number of Covariation Exemplar-
K presentation coding similarity Natural Arbitrary
1. 111 3 10.49 3.5 87.50 78.13
2, 121 - 342 1.5 53.13 40.63
3. 131 — 1.11 0.5 15.63 28.13
4. 112 1 7.34 35 75.00 78.13
5 122 = 342 0.5 53.13 43.75
6. 132 — 1.59 1.0 28.13 43.75
T 113 2 5.14 25 62.50 75.00
8. 123 - 3.42 1.0 43,75 34.38
9. 133 == 2.27 L3 21.88 40163
10 211 — 4.88 1.5 31.25 62.50
11 221 3.42 1.5 53.13 68.75
12 231 1 2.39 2.0 62.50 G6B.75
13 212 3.42 0.5 43.75 65.63
14 222 3.42 25 6R.75 53.13
15 232 2 3.42 4.0 75.00 68.75
16. 213 — 2.39 1.0 25.00 56.25
17. 223 — 3.42 2.0 71.88 50.00
14, 233 3 4.88 4.0 78.13 53.13
19, 31 - 2,27 1.0 21.88 31.25
20. 321 2 3.42 3.5 56.25 65.63
21. 331 — 5.14 1.5 40.63 40.63
22, 312 — 1.59 1.5 28.13 37.50
23. 322 3 3.42 4.5 56,25 75.00
24. 332 = 7.34 25 84,38 43.75
25, 313 =2 1.11 0.5 12.50 43.75
26. 323 1 342 2.5 50.00 71.88
27, 333 — 10.49 2.0 78.13 53.13

as possible during the first part of the test, and allowed to complete the last part without time
canstraints; the other half performed the tasks in the reverse order, A signal was given in the middle
of the test session to prompr them to change tasks. No mention was made of the fact that the two test
parts consisted of rhe same set of robors.

For each robot, participants had to respond by pressing one out of the first three keys on the numeric
keypad of the keyboard. They were told to press *1” if the target tobot had not béen viewed earlier and
looked very different from the robots displayed in the study phase; “2” if the target robot had not been
viewed carlier, but looked like the robots displayed in the study phase; and *3” if the target tobot had
been viewed in the study phase. An abridged version of these options corresponding to their numeric
labels was printed at the bottam of the screen. In fact, due to the strong similarity berween all of the
robots, only 16.9 per cent of responses fell into 17, and 30.3 per cent into *2”. Analyses were performed
after pooling responses ‘1" and *2”, so that the final scores were akin to those issued from a conventional
yes/no recognition test.

Model predictions

Model predictions are shown in Table 2. They were computed as in Perruchet ef al. (1993). The
predictions from the covariation coding model were derived from log-linear statistics, as in the studies



452 Pierre Perruchet et al.

by Richardson. The predictions from the exemplar-similarity model were the sum of two components,
which were respectively proportional to (1) the frequency of occurrence of the targer item.
Proportionality coefficient was set to one, so that this component value was in fact equal to the number
of presentation of the item; and (2) the frequency of occurrences of items similar to the targer item, the
similarity between two items being defined by the fact that they differ only by one value on one variable.
Proportionality coefficient was arbitrarily ser to 1/2. Note that the predictions of the two models are
set in arbitrary units. No care was taken to fit the predicted values with realistic recognition scores,
because the models allow only relative predictions to be made and in keeping with this fact, the
subsequent analyses related to the models rely only upon relative information (e.g. linear correlations
are insensitive to any linear transformation of the data).

For the sake of illustration, let us consider items 26 and 27 in Table 2. The value predicted by the
covariation coding model is far higher for item 27 than for item 26, because item 27 is much more
representative of the correlations between variables exhibited during the study phase than is item 26,
On the contrary, the exemplar similarity model predicts more positive responses for item 26 than for
item 27, essentially because item 26 was displayed during the study phase, whereas item 27 was not,
(More precisely, item 26 was credited with one unit, because it was shown once; and with 3/2, i.e. 1.5
supplementary units because it was similar to item 23, which was shown three times; item 27 was
credited with 1.5 4 0.5 units because of its similarity with item 18 and item 26, respectively.) The overall
correlation between the two sets of predictions over the 27 test robots was .44,

Results

Instructions given in the test phase to control the speed of responding were effective:
the mean latency of responses was notably shorter under speeded (M = 2.035 s) than
unspeeded (M = 5.500 s) conditions. For the unspeeded condition, the latencies were
shorter when this condition was given after the speeded condition than when this
condition was given first (M = 4.604 vs. 6.395 s; F(1,28) = 4.49, p = .043). The
same trend was observed for the speeded condition, but the difference failed to reach
significance (M = 1901 vs. 2169 s, F(1, 28) = 1.12, p > .10). The former effect
presumably reflects the difficulty that participants had slowing down their speed of
responding after some practice in the speeded condition.

However, the speed of responding factor had no reliable effect upon recognition
scores. Participants judged as old 69 per cent of old robots and 48 per cent of new
rabots under speeded conditions, and likewise, 68 per cent of old robots and 42 per
cent of new robots under unspeeded conditions. A 2 x 2 repeated measures analysis
of variance showed that the item status (old vs. new) had an effect (F(1,28) = 22.43,
p < .001), hence confirming better than chance recognition of old robots. But there
was no main effect of test conditions (fast vs. slow) (F(1,28) = 1.19, p > .10), and
no interaction between test conditions and item status (F < 1).

The lack of any effect on the mean performance does not imply that speeded
conditions had no effect on the pattern of responding, which is of primary
importance here. To investigate this hypothesis, the percentage of old responses over
all the participants was computed for each test robot separately for speeded and non-
speeded conditions, and a correlation between the two sets of measures was
computed. The resulting Pearson product correlation, computed over the 27 test
robots, was a substantial .836.

On the basis of these results, the analyses contrasting the performances of pre-
primed and arbitrary groups were run after averaging data across the two test
conditions. Participants judged as old 66.9 per cent of old robots and 43.0 per cent
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of new robots in the pre-primed group, and 70.4 per cent of old robots and 46.5 per
cent of new robots in the arbitrary group. An analysis of variance performed with
groups as a between-subject factor and status of items (old vs. new) as a repeated
measure factor indicated no main effect for group and no interaction between group
and item status (all Fs < 1). Thus the two categories of variables were of equal
efficiency in promoting learning.

The percentage of old judgments was computed for each test robot, separately for
the pre-primed and the arbitrary groups. The results are shown in Table 2. Scanning
individual values offers some preliminary insight into the pattern of results. For
instance, the performances for items 26 and 27, which were taken as privileged
instances above (see Model prediction section), showed a drastic inversion for the
two groups. While those perceiving pre-primed covariations gave more old
responses for item 27, as predicted by the covariation coding model, the reverse trend
was observed in the group perceiving arbitrary correlations, as predicted by the
exemplar-similarity model. Virtually the same pattern appeared for items 23 and 24.
However, such a piecemeal analysis is admittedly limited.

To obtain an overall picture of the pattern of the results, we performed
correlational analyses over the 27 test robots. The correlation between groups was
moderately high: .539. Thus, although not differing on mean performance, the
between-groups correlation suggests that the groups displayed partially different
patterns of response. For the pre-primed group, Pearson’s r between recognition
scores and the predictions generated by the covariation coding and the exemplar-
similarity models were respectively .726 and .710. Pooled together, predictions of the
two models gave a multiple R of .846. The running of hierarchical multiple
regression analyses with different entrance orders demonstrated that the addition of
one model significantly improved predictions made from the other, and conversely.
The I to enter exemplar-similatity after covariation coding model predictions was
15.94 (1,24), p < .001, and the F to enter covariation coding after exemplar-similarity
model was 17.87 (1,24), p < .001,

The pattern was strikingly different for the arbitrary group. Pearson’s r between
recognition scores and the predictions generated by the covariation coding and the
exemplar-similarity models were respectively .401 and .638. Hierarchical multiple
regression analyses demonstrated that exemplar similarity added significant predictive
power to the covariation coding model (F to enter: 11.09 (1,24), p < .001).
However, the covariation coding model did not improve upon predictions made
from the exemplar-similarity model (F to enter < 1); indeed, the multiple R (.652)
scarcely differed from the Pearson’s 7 involving the exemplar-similarity model alone.

Discussion

The data collected on participants faced with pre-primed covariations closely
replicated those of Richardson’s studies. Covariation coding and exemplar-similarity
models accounted for substantial and mutually complementary parts of performance
variance, as Perruchet e a/. (1993) showed to be the case in most of Richardson’s
experiments. Our data fit especially well with those collected in the Richardson &

Y=
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Carthy (1990, Expt 1) study, whose paradigm served as a direct model in designing
the present experiment.

However, a strikingly different finding emerged when participants were faced with
unprimed covariations. The exemplar-similarity model still accounted for a
substantial part of performance variance, but the covariation coding model did not
in any way improve the predictions made from the exemplar-similarity model alone.
These results clearly support our initial hypothesis, which accounts for the predictive
power of the covariation coding model in Richardson’s studies by the match between
experimentally induced and pre-primed covariations. When original variables were
replaced by variables not related a priori in the participant’s mind, the covariation
coding model lost any specific predictive power. Inferring the psychological
processes at work from the correspondence of the data with the models, these results
support the contention that participants did not abstract the covariations embedded
in the study material while studying under memoty-oriented instructions, insofar as
experimentally induced covariations are not pre-primed.

One could argue that this pattern of results is linked to the specific mode of
computation of the values predicted by the two models. A large range of other
computational procedures would have been possible, and the selected ones may be
criticized in several ways. For instance, the exemplar-similarity model is overly
simple, and the determination of its parameters is largely arbitrary. To address this
problem, we performed exploratory analyses after having introduced some variations
into the parameters of the exemplar model. These changes did not substantially affect
the results, OF course, these analyses did not entirely refute the argument. However,
the selected modes of computation have at least one advantage over other, possibly
more sophisticated alternatives: they can not be suspected of being ad hoc. They were
propounded before the present experiment was run, and had previously been applied
to other data, with the very same set of parameters (Perruchet e/ al., 1993).

Another argument contesting the validity of our conclusion is that differences
between the pre-primed and the arbitrary conditions could be linked to the
differential saliency or distinctiveness of the individual variables at hand, rather than
to the factor of interest here. In this line of reasoning, participants faced with
unprimed covariations failed to discover these covariations whereas those faced with
pre-primed covariations succeeded in doing so, because the variables involved in the
former case were less easily identifiable and codeable than the variables involved in
the latter case. This argument finds apparent support in the fact that performances
correlated slightly better with exemplar-similarity model predictions in the pre-
primed group than in the arbitrary group. Although not significant, this difference
(.710 vs. .638, Z = 0.458, p > .10) suggests that the study material of both groups
differed with regard to characteristics other than the presence or absence of pre-
primed covariations.

This objection can not be directly dismissed from available empirical data, because
individual variable characteristics were not properly controlled. Although care was
taken to equalize saliency between all variables in preparing material for this set of
studies, we proceeded only through informal pilot experiments, which were not
devised to provide data suitable for conventional statistical analyses.

However, a couple of remarks are in order. First, the fact that the correlation
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between performance and exemplar-similarity model predictions tends to differ for
the pre-primed and arbitrary groups cannot be construed as valid support for the
argument under examination. It must be realized that the correlation between
performance and exemplar-similarity model predictions does not reflect only that
part of performance which is imputable to the memory for exemplars. Indeed, this
correlation may be due in part to genuine covariation processing, because predictions
from exemplar-similarity and covariation coding models correlate. As a consequence,
a drop in the predictive power of the exemplar-similarity model (assessed through the
simple correlation between observed and predicted performance) may be expected
when participants no longer process covariations. It would be faulty to consider this
decrement as evidence that participants experienced increased difficulty in
memorizing exemplars.

A second remark is that the non-difference between groups in mean recognition
scores runs counter to the idea that the variables at hand were less salient in the
arbitrary than in the pre-primed group. Morcover, the fact that participants
discriminated between old and new robots to the same extent in both groups
suggests that the variables involved in the arbitrary group could be more salient than
the variables involved in the pre-primed group, in order to compensate for the
impairment in performance due to the failure to use the relational information
embedded in the study material. Whatever the case may be, a conservative conclusion
is that there is no empirical evidence favouring the claim that the difficulty of
abstracting arbitrary covariations is due to the lack of saliency or distinctiveness of
individual variables.

Experiment 2 was also devised to examine whether participants could abstract
even unprimed covariations when given sufficient time to respond in the test phase.
With this aim in mind, they were successively tested under speeded and unspeeded
conditions. Although this variable was found to be effective in some situations (e.g.
Turner & Fischler, 1993), it introduced no reliable differences in the partern of the
result. It is likely that the number of different robots, their close similarity, and the
limited amount of repetitions made it difficult to efficiently scan the stored items in
order to draw abstract organizing rules, even when response time was unlimited.
Wattenmaker, McQuaid & Schwert (1995) report similar difficulty for detecting
feature co-occurrence through the analysis of memorized exemplars across a variety
of category structures and stimulus materials, although participants were told that
they could take as long as they wished before responding.

GENERAL DISCUSSION

The present set of studies was designed to investigate participants’ sensitivity to the
correlational structure of the environment. Our aim was to disentangle the influences
of two candidate mechanisms used to account for this sensitivity, namely the genuine
abstraction of empirical relations, and the establishment of analogies with stored,
specific exemplars. This latter mechanism is @ priori effective, because new items
which respect the correlations tend to be similar to a larger number of old items than
those which violate the correlations. The respective weights of the two possible
influences were assessed through regression procedures. Our results emphasize the
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utmost importance of determining whether the experimentally induced correlations
between variables are representative of participants’ background knowledge, or
rather are fully arbitrary. Participants’ performance appears sensitive to both forms
of correlations, as attested to by the substantial predictive value of the covariation
coding model. However, hierarchical regression analyses suggest that they actually
used their correlational knowledge with pre-primed correlations, whereas they failed
to abstract arbitrary correlations. In the latter case, empirical sensitivity to
correlational structure was a by-product of judgments of similarity with specific, old
exemplars.

The strong empirical influence of background knowledge leads us to emphasize
the necessity of assessing this knowledge through experimental manipulations
before investigating covariation learning. This knowledge ought to be assessed
indirectly, because it can not be easily derived from reasoning and intuition, regardless
of whether reasoning and intuition proceed from the experimenter or the participants.
Our first experiment provides an original method to assess knowledge indirectly.
The validity of this method was confirmed « posteriori by the results of the second
experiment, insofar as the variables dissociated on the basis of Expt 1’s results
revealed themselves to be processed in quite distinctive ways in Expt 2:

Of primary importance here are the consequences of the covariation bias when
studying incidental rule learning. In a previous paper, Perruchet e al. (1993)
concluded that the apparent sensitivity to covariations demonstrated in the
Richardson studies could not be considered anly as the by-product of the memory for
specific exemplars. The present results show that this contention is in fact dependent
upon the use of a correlational structure that partly matches the structure participants
have in mind before they come into the laboratory. No similar evidence emerges
when experimental variables are chosen to be @ priori unrelated. This finding
replicates and extends, with quite an original methodology, ptior evidence for the
failure to observe incidental covariation abstraction (e.g. Perruchet, 1994,
Wattenmaker, 1991, 1993). Overall, these results run counter to Richardson’s claim
regarding people’s ability to abstract the covariations embedded in structured
environments, and consequently, the role he confers to this process in the
development of knowledge in children (Richardson, 1992; see also Younger &
Cohen, 1985).

More generally, incidental covariation abstraction is a case in point in the current
literature pertaining to the phenomenon of implicit learning (for a review, see Berry
& Dienes, 1993). Although Richardson and Wattenmaker make only allusive
reference to this literature at best, their situations exhibit a striking parallelism with
those involved in implicit learning research. In both cases, participants are faced with
a complex rule-governed situation with memory-oriented instructions, and their
adapration to the situation is assessed indirectly through performance modifications.
In the implicit learning area, a major issuc focuses on the question of whether their
adaptation testifies to the implicit abstraction of the rules governing the experimental
situations, or may be accounted for by more elementary mechanisms, such as the
memory of specific study items or simple associative processes (Perruchet & Gallego,
in press). Although early contributions lent favour to the first position (e.g. Reber,
1967), subsequent studies provide growing evidence for the second position (e.g.
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Perruchet & Pacteau, 1990; see review in Shanks & St John, 1994). Available
evidence led us to suggest that in order to acquire the abstract rules underlying
complex experimental arrangements, humans have to engage in explicit hypothesis
testing, logical inference, and more generally, the various controlled processes
recruited in intentional rule discovery situations (Perruchet, 1994). The evidence
collected in this paper supports this general view in the particular context of
covariation abstraction.
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