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Several studies ditected by K. Richardson (Richardson, 1986, 1987; Richardson &
Carthy, 1989, 1990) claimed that people are able to abstract impetfect covariations
among feature variables defining artificial categories, and to use that information in
various subsequent tasks. We challenge this claim on a twofold basis. First, a large
part of the performance variance Richardson attributed to covariation knowledge
may be accounted for by a very simple exemplar model, which assumes no
abstractive processes. Second, the residual influence of relational information on
performance may be attributed to the knowledge subjects have acquired in real-
world situations before their training with the study exemplars.

A recent series of experiments carried out in K. Richardson’s laboratory aimed at
demonstrating the ability of people to abstract imperfect or ‘fuzzy’ covariations
among feature variables defining categories, and to use that information in various
subsequent tasks (Richardson, 1986, 1987: Richardson & Carthy, 1989, 1990).

Let us consider Expt 1 in Richardson & Carthy (1990) which will serve as a
privileged example throughout this comment. Stimuli were pictures of robots. They
differed along three variables (I, ] and K): the length of the arms, the size of the body
and the size of the head. Each variable had three possible values (1: small;
2: medium; 3: large). All the possible combinations of variables defined a set of 27 (3%
items whose configuration is reported in Table 1, column 1. In the first phase of the
experiment, subjects were asked to study and remember nine out of the 27 possible
pictures. These items, along with their occurrence frequencies (see Table 1, column 2);
were selected so that the three variables exhibited a moderately high overall level
of covariation (in fact, only the I and ], and | and K associations were significant).

In a subsequent test phase, subjects were shown the full set of 27 exemplars. They
were asked to indicate whether each of the pictures was a2 member of the experienced
set, and to rate their level of confidence about their decision. The mean results (after
coding the responses on a six-point scale) are reported in Table 1, column 3.

These empirical results were compared with the values predicted by a covariation
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coding model, based on the application of log-linear statistics. The method of
computation is described at length in all the Richardson and associates studies, and
it will not be reproduced here in order to save space. It is sufficient for our concern
to point out that a log-linear model allows the simulation of the performance of a
subject who would have abstracted the covariations embedded in the study material,
and would make recognition judgements on the sole basis of this relational
information. Pearson’s r between recognition judgements and predicted values
(shown in Table 1, column 4) was a substantial .701.

Several eatlier studies investigated recognition or typicality judgements in similar
situations (Richardson, 1986; Richardson, 1987, Expt 1). They also gave evidence
that values predicted by the covariation coding model fit subjects’ observed
performance well. In other studies (Richardson, 1987, Expt 2; Richardson & Carthy,
1989) subjects were trained as above, but they had to complete the missing part of
an incomplete stimulus in the test phase. For instance, after viewing exemplars
exhibiting a covariation between I, ] and K variables, subjects were asked to infer the
value of K given the values on I and J. Subjects’ completions were also predicted
fairly well by the covariation coding model.

We do not intend to challenge the reliability of the experimental results just
outlined. We take hereafter for granted that the covariation coding model is 2 good
predictor of performance, a finding which provides evidence, in a clever and original
way, that subjects’ performance is sensitive to the moderately strong covariations
structuring the environment. What we do challenge is the inference Richardson
draws about the nature of the psychological processes underlying the performance
pattern. According to Richardson, the results just outlined demonstrate that subjects
abstract knowledge about covariation among variables while studying exemplars,
and use this abstract knowledge in subsequent recognition, typicality, and completion
judgements.

Covariation coding versus exemplar-similarity models

The validity of Richardson’s inference rests on the postulate that a concurrent model
cannot account for observed performance better than, or at least as well as, the
covariation coding model. In this regard, Richardson deals with two other models
of categorization, framed around the notions of prototype representation and
independent feature frequency respectively. He shows through quantitative
simulations that these concurrent models fail to explain a substantial part of the
performance variance. However, Richardson pays only marginal attention to another
class of models, which does not call for any abstraction process. In these so-called
exemplar or ‘exemplar-similarity’ models, the studied exemplars are stored in
memory with their specific properties, and subsequent categorization judgements of
new items are made on the basis of their degree of similarity with the stored
exemplars (Brooks, 1978; Medin & Shaffer, 1978). Richardson rejects the exemplar
models on the basis of anecdotal case reports illustrating a discrepancy between the
predictions derived from these models and the empirical data (e.g. Richardson &
Carthy, 1990, p. 425). The present section aims at demonstrating that these models,
even when instantiated by a few simple rules, are in fact as powerful as the
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covariation coding model in accounting for observed typicality or recognition
judgements."

A very simple exemplar-similarity model

In the model used here, the expected typicality or recognition judgement for a given
item is the sum of two components, which are respectively proportional to: (1) the
frequency of occurrence of the target item. Proportionality coefficient was set to one,
so that this component value was in fact equal to the number of presentations of the
item; and (2) the frequency of occurrences of items similar to the target item, the
similarity between two items being defined by the fact that they differ only by one
value on one variable. Proportionality coefficient was arbitrarily set to 1/2. Thus, for
instance, an item similar to an item displayed 10 times was credited an additional
expected value of 5 units.

For the sake of illustration, consider again the Richardson & Carthy (1990) Expt 1.
Table 1 shows that item Il J1 K1 (the robot with all small parts) was credited an
expected value of 3.5. Three units were attributed because the item was displayed
three times in the study phase. The additional .5 unit stems from the fact that the
target item is similar to item I1 J1 K2, which was displayed once in the study phase.
The target item is also similar to items I2 J1 K1 and I1 J2 K1, but these items were
not previously displayed, and hence provide no additional value. The predictions
generated for the remaining items according to the same principles are shown in
Table 1, column 5.

A variety of other computational modes would have been possible. One option
which deserves special mention pertains to the operationalization of the concept of
similarity. The model we choose here instantiates featural, and not relational
similarity (e.g. Goldstone, Medin & Gentner, 1991). For instance, 12 J2 K2 is not
taken to be similar to Il J1 K1, and hence no transfer is assumed to occur between
both items. This choice was intended in order to avoid spurious reintroduction of
covariation processing into the notion of similarity. For the other aspects, simplicity
was the main criterion of choice.

Comparing predictive power of covariation coding and exemplar models

Correlations between recognition ratings and the predictions generated by
covariation coding and exemplar-similarity models were computed over the 27 test
items. Pearson’s r berween predicted values displayed in Table 1 were respectively
.701 and .762.

Similar analyses were carried out for all the sets of data available in Richardson’s
studies. These include (1) results for two different categories (‘Gleeks’ and
‘Loopers’) tested in the same subject sample in Richardson (1986), (2) results on

' Quantitative comparisons will be presented only for the studies in which subjects were asked for typicality or
recognition judgements in the test phase. Conceptual generalization to the studies requiring inference from
incomplete information is straightforward. However, the results of most of these studies are not easily prone to past
hoe analyses, because part of the required results are unavailable; indeed, only test items relevant to Richardson’s
concerns were presented to subjects during testing.
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Table 1. Observed performance (recognition scores on a six-point scale) and values
predicted by the two concurrent models for each of the 27 test items. Values in
columns 1-4 are taken from Richardson & Carthy (1990, Tables 1¢, 26 and 3). The
data represented in italics serve as illustration in the text

Items Predicted values
Configuration Number of Observed Covariation Exemplar

ITK presentation values coding similarity
111 3 4.81 10.49 3.5
121 — 3.06 3.42 1.5
131 — 1.56 1.11 0.5
112 1 4.19 7.34 3.5
122 — 2.83 3.42 0.5
132 — 1.98 1.59 1
113 2 3.61 5.14 28
123 — 2.72 3.42 1
133 - 2.03 2.27 1.5
211 — 344 4.58 1.5
221 - - 3.42 3.42 145
231 1 3.06 2.39 2
212 — iy 7 3.42 0.5
222 — 3.64 3.42 2.5
232 2 3.75 3.42 4
213 — 3.09 2.39 1
223 — 3.61 3.42 2
233 3 3.94 4.88 4
311 — 2.00 2.27 il
321 2 3.69 3.42 315
331 — 2.53 5.14 1.5
312 — 213 1.59 1.5
322 3 3.83 3.42 4.5
332 -- 3.44 7.34 2.5
313 — 1.97 1.11 0.5
323 1 3.64 3.42 2.5
333 = 3.70 10.49 2

single category learning for two independent groups of subjects (A and B) differing
by their amount of training in Richardson (1987, Expt 1) and (3), four successive tests
(T1, T2, T3, T4) on the same subjects for a single category in Richardson & Carthy
(1990, Expt 1; T1 serves herein as illustrative example). Predictions from the
exemplar-similarity model were generated in each case as indicated above.

Results are shown in Table 2, columns 1 and 3. On the whole, subjects’
performance fitted better with the exemplar model than with covariation coding
model in six out of the eight comparisons, and the reverse result was obtained in the
two others.
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Table 2. Summary of the results from hierarchical multiple regression analyses. The
data represented in italics serve as illustration in the text

Predictors of performance

Covariation Exemplar
coding similarity
F to enter F to enter
Sources r ES r cC Multiple R
Richardson (1986)
‘Gleeks’ 483 5.096 533 3.168 .606
‘Loopers’ 594 1.641 439 8.276 .628
Richardson (1987)
A .693 1.108 .610 6.253 709
B .568 3.645 .619 1.139 .642
Richardson & Carthy
(1990, Expt 1)
T1 701 24.003 762 15.557 863
T2 .651 22.749 763 9.456 837
T3 615 14.315 704 7.065 781
T4 568 11.572 672 4.813 T37

Alternative or complementary models?

Do covariation coding and exemplar-similarity models account for the same or for
independent components of variance on typicality or recognition judgements?
Consider again the data in Richardson & Carthy (1990, Expt 1, first test). The
correlations between the sets of values predicted by the two models was .441. This
moderate value makes it possible that each model accounts for at least partially
independent components of variance in performance.

This hypothesis was tested with a hierarchical multiple regression technique.
Entering predictions of covariation coding and exemplar models into the regression
equation produced a multiple R of .863. The squared R, which described the
proportion of the performance variance shared with the optimally weighted
predictions from the two models, is .745. Covariation coding model alone accounts
for a proportion of variance of .491. Entering exemplar model predictions into the
regression equation increases the part of explained variance significantly (F = 24.00).
Similar results were found when the variables were entered in the reverse order: the
addition of the covariation coding model preditions significantly increases (F =
15.56) the amount of variance explained by the exemplar model alone (.58).

Table 2 shows the results of similar computations for each of the eight sets of data
available in the Richardson papers. Multiple R are shown in the right-hand column;
they range from .606 to .863, hence demonstrating that combination of the two
models achieved good to excellent predictions of subjects’ judgements. More
importantly, F tests reported in columns 2 and 4 show that in most cases one model
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adds significant predictive power to the other. This occurs in five out of the eight sets
of values when the covariation coding model is entered first in the regression
equation, and in six out of the eight sets of values when the entrance order is
reversed.

To sum up, the present results show that a very simple exemplar-similarity model
is as good a predictor of performance as the covariation coding model, if not a better
one. Such a conclusion considerably softens Richardson’s claim pertaining to the
overall supremacy of the covariation coding model over concurrent ones. However,
our results also show that the covariation coding model may still account for a
reliable part of variance in performance when predictions of the exemplar model are
partialled out, hence suggesting that the apparent sensitivity to covatiation cannot be
considered only as the by-product of the memory for specific exemplars.

Covariation abstraction or background knowledge?

We now argue that the evidence provided for the use of relational information
during the test phase does not testify that covariations are abstracted during the study
session.

In most of Richardson’s studies, the to-be-abstracted relations bear on the size of
the different components of the study items. More precisely, the best exemplars of the
concepts are those in which the different components — arms, head and body for the
robots — have the same relative size (all small, all medium, or all large). The point is
that this kind of dimensional covariation is ubiquitous in everyday subjective
experience. Consequently, subjects could be sensitive to dimensional covariation
independent of any specific training in the experimental setting.®

A close scrutiny of the data in Richardson & Carthy (1990) provides empirical
support for this hypothesis. In this study, covariations experienced in the study phase
were restricted to only two (I] and JK) out of the three pairs of variables in Expt 1,
and to only one pair of variables (I]) in Expt 2. Although this aspect was ignored
by the authors, the other pairs of variables (namely IK in Expt 1, and IK and JK in
Expt 2) may serve as controls. If sensitivity of subjects to relational information in
the test phase stems from the abstraction of such information from study exemplars,
then subjects’ performance must be random when analysis is circumscribed to the
variables for which a no-contingency relation was experienced in the study phase.
This prediction is clearly confirmed by the data. For instance, Table 7 in Richardson
& Carthy (1990) shows that, in Expt 2, the best three recognized items among the
nine (3%) which instantiate all the possible combinations of the IK variables are:
I1 K1, I2 K2, and I3 K3. Thus subjects trained with items in which [ and K features
exhibited no particular relationship to preferentially recognized items in which I and
K features are well-proportionate, and this trend appears to be general.

The major conclusion to be drawn from these data is that subjects’ judgements

® The single exceptions to the size covariation principle are in studies where stimuli are houses. One of the
variables in Richardson (1987, Expt 2) is the number of windows (1, 2 or 3), and in Richardson & Carthy (1989),
the shape of the houses’ roof (single-, double-, or triple-pitched). These exceptions do not detract from our argument,
insofar as the study items still exhibited covariations which parallel natural expectations (e.g. large houses were more
likely to have three windows or a triple-pitched roof than small houses).



Abstraction of covariation in category learning 295

may be sensitive to a positive covariation between the relative size of stimulus
components, although the stimulus displayed in the study phase instantiate a no-
contingency relation for these variables!

In order to demonstrate that subjects really abstract the fuzzy covariations
embedded in the study material, one definitely needs to use variables that are
unrelated in the subjects’ background knowledge. Pending results collected in
experiments fulfilling this condition, data provided by Richardson’s studies offer no
compelling evidence that subjects are able to abstract covariations among feature
variables.
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