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Young infants show unexplained asymmetries in the exclusivity of categories formed on the basis of 
visually presented stimuli. A connectionist model is described that shows similar exclusivity asymmetries 
when categorizing the same stimuli presented to infants. The asymmetries can be explained in terms of 
an associative learning mechanism, distributed internal representations, and the statistics of the feature 
distributions in the stimuli. The model was used to explore the robustness of this asymmetry. The model 
predicts that the asymmetry will persist when a category is acquired in the presence of mixed category 
exemplars. An experiment with 3-4-month-olds showed that asymmetric exclusivity persisted in the 
presence of mixed-exemplar familiarization, thereby confirming the model's prediction. 

Young infants can form perceptual category representations 
when presented with a set of perceptually similar stimuli from the 
same class. These representations allow infants to organize their 
perceptual experiences into groupings that in many instances come 
to have conceptual significance for children and adults. For exam- 
ple, by 3 or 4 months of age infants have been shown to categorize 
a range of real-world images of cats, dogs, horses, chairs, and 
couches (Madole & Oakes, 1999; Quinn, 1998; Quinn & Eimas, 
1996a). However, the perceptual category representations do not 
always have the same characteristics as might be expected from 
the corresponding adult category representations. In particular, the 
extension and exclusivity of the perceptual category representa- 
tions of infants (i.e., the range of exemplars accepted or rejected as 
members of the category) may differ from those of adult category 
representations. 

Quinn, Eimas, and Rosenkrantz (1993) used a familiarization- 
novelty preference technique to determine if the perceptual cate- 
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gory representations of familiar animals (e.g., cats and dogs) 
acquired by young infants would exclude perceptually similar 
exemplars from contrasting basic-level categories. They found that 
when 3-4-month-olds were familiarized with six pairs of cat 
photographs presented sequentially (12 photographs), the infants 
subsequently preferred to look at a novel dog photograph rather 
than a novel cat photograph. Because infants have an inherent 
preference for looking at unfamiliar stimuli (Fagan, 1970; Fantz, 
1964; Slater, 1995), this result was interpreted as showing that the 
infants had developed a category representation of Cat that in- 
cluded novel cats (hence less looking at the cat photograph) but 
excluded novel dogs (hence more looking at the dog photograph). 
However, when the infants were initially familiarized with six 
pairs of dog photographs sequentially (12 photographs), they 
showed no subsequent preference for looking at either a novel dog 
or a novel cat. Furthermore, control conditions revealed that (a) the 
infants preferred to look at a novel test bird after initial familiar- 
ization with either dogs or cats, (b) there was no a priori preference 
for dogs over cats, and (c) the infants were able to discriminate 
within the Cat and Dog categories. Taken together, these findings 
led Quinn et al. to suggest that the 3-4-month-olds had formed a 
perceptual category representation of Dog that included novel dogs 
but also included novel cats. 

There appears to be an asymmetry in the exclusivity of the two 
perceptual category representations formed during familiarization. 
The Cat representation excludes novel dogs, whereas the Dog 
representation does not exclude novel cats. The reason for this 
asymmetry remains unclear, although Quinn et al. (1993) pre- 
sented some evidence that it might be related to greater variability 
among dogs. We believe that a full explanation of this asymmetry 
requires a mechanistic account of how categories are formed by 
infants during a test session. Some researchers have tried to iden- 
tify what information within a set of stimuli might be used by 
infants to delimit a perceptual category representation (Quinn & 
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Eimas, 1996b; Younger, 1985; Younger & Cohen, 1986). Al- 
though this approach can be very revealing about the basis for 
categorization, it leaves unanswered the question of how catego- 
ries are causally derived from the set of exemplars experienced by 
the infant. Given that the role of developmental psychology is to 
establish the causal mechanisms by which behavior emerges, we 
propose in this article to explore how and why young infants 
categorize complex visual images in the way they do. To achieve 
this goal we present a combination of connectionist (computation- 
al) modeling and an experimental study of infant behaviors de- 
signed to test the legitimacy of the modeling. 

Computational modeling provides a tool for exploring the mech- 
anisms that underlie behavior. Connectionist models are computer 
models loosely based on the principles of neural information 
processing (Elman et al., 1996; Mareschal, in press; McLeod, 
Plunkett, & Rolls, 1998; Rumelhart & McClelland, 1986). They 
are not intended to be neural models. Instead, they attempt to strike 
a balance between importing some of the basic concepts from the 
neurosciences and formulating questions about behavior in terms 
of high-level cognitive concepts. 

From a developmental perspective, connectionist networks are 
ideal for modeling because they develop their own internal repre- 
sentations as a result of interacting with a structured environment 
(Mareschal & Shultz, 1996; Plunkett & Sinha, 1992). Although 
connectionist modeling has its roots in associationist learning 
paradigms, it has inherited the Hebbian rather than the Hullian 
tradition. That is, what goes on inside the network (i.e., the internal 
representation of information) is as important in determining the 
overall behavior of the network as are the correlations between the 
inputs (stimuli) and the outputs (responses). 

Building a Model of Infant Categorization 

Many infant visual categorization tasks rely on preferential 
looking techniques that are based on the finding that infants direct 
attention more to unfamiliar or unexpected stimuli (Fagan, 1970; 
Fantz, 1964; Slater, 1995). The standard interpretation of this 

behavior is that the infants are comparing an input stimulus to an 
internal representation of the same stimulus (e.g., Charlesworth, 
1969; Cohen, 1973; Sokolov, 1963). As long as there is a discrep- 
ancy between the information stored in the internal representation 
and the visual input, the infant continues to attend to the stimulus. 
While attending to the stimulus, the infant updates his or her 
internal representation. When the information in the internal rep- 
resentation is no longer discrepant with respect to the visual input, 
attention is switched elsewhere. When a familiar object is pre- 
sented, there is little or no attending because the infant already has 
a reliable internal representation of that object. In contrast, when 
an unfamiliar or unexpected object is presented, there is much 
attending because an internal representation has to be constructed 
or adjusted. The degree to which the novel object differs from the 
information stored in the existing internal representations deter- 
mines the amount of adjusting that has to be done and hence the 
duration of attention. 

We used a connectionist autoencoder to model the relation 
between attention and representation construction (Mareschal & 
French, 1997, 2000; Schafer & Mareschal, in press; see Figure 1). 
An autoencoder is a feedforward connectionist network with a 
single layer of hidden units (Ackley, Hinton, & Sejnowski, 1985; 
Rumelhart & McClelland, 1986). The network learns to reproduce 
on the output units the pattern of activation across the input units. 
The number of hidden units must be smaller than the number of 
input or output units. This architectural constraint produces a 
bottleneck in the flow of information through the network. Learn- 
ing in an autoencoder consists of developing a more compact 
internal representation of the input (at the hidden-unit level) that is 
sufficiently reliable to reproduce all of the information in the 
original input--hence the incentive to develop category-based 
representations. Information is first compressed into an internal 
representation and then expanded to reproduce the original input. 
The successive cycles of training in the autoencoder constitute an 
iterative process by which a reliable internal representation of the 
input is developed. The reliability of the representation is tested by 
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Figure 1. Learning via iterative representation adjustment in (a) infants and (b) connectionist autoencoder 
networks. From "Mechanisms of Categorization in Infancy," by D. Mareschal and R. M. French, 2000, 
Infancy, 1, p. 62. Copyright 2000 by Lawrence Erlbaum Associates, Inc. Reprinted with permission. 
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expanding it and comparing the resulting predictions with the 
actual stimulus being encoded. Similar networks have been used to 
produce compressed representations of video images (Cottrell, 
Munro, & Zipser, 1988). 

We suggest that during the period of captured attention, infants 
are actively involved in an iterative process of encoding visual 
input into an internal representation and then assessing that repre- 
sentation against continuing perceptual input. This assessment is 
accomplished by using the internal representation to predict what 
the properties of the stimulus are. As long as the representation 
fails to predict the stimulus properties, the infant continues to 
fixate the stimulus and to update the internal representation. Sim- 
ilar interpretations have been suggested elsewhere (Mareschal & 
French, 2000; Mareschal, Plunkett, & Harris, 1999; Munakata, 
McClelland, Johnson, & Siegler, 1997; see also Di Lollo, Enns, & 
Rensink, in press, for a comparable account of adult visual object 
recognition). 

This modeling approach has several implications. It suggests 
that infant looking times are positively correlated with network 
error. 1 The greater the error, the longer the looking time. Stimuli 
presented for a very short time will be encoded less well and 
produce more error than stimuli presented for a longer period. 
However, prolonged exposure after error (attention) has fallen off 
will not improve memory of the stimulus. The degree to which 
error (looking time) increases on presentation of a novel object 
depends on the similarity between the novel object and the familiar 
object. Presenting a series of similar objects from the same per- 
ceptual category leads to a progressive error drop on future similar 
objects. A prototype of the set of objects leads to lower error than 
do individual objects. All of this is true both of autoencoders 
(where output error is the measurable quantity) and of infants 
(where looking time is the measurable quantity). 

S imula t ion  1: The  D e v e l o p m e n t  o f  Cat 

and D o g  Categor ies  

The modeling results in this section and the next simulation 
section are based on the performance of a standard 10-8-10 feed- 
forward backpropagation network. 2 Autoencoders are reasonably 
robust in response to variations in the number of hidden units and 
the value of specific parameters. One requirement for efficient 
autoencoding is that there be a sufficient number of hidden units to 
capture the principal components of variation in the data. How- 
ever, too many hidden units may reduce the network's ability to 
generalize to novel exemplars. These and other aspects of autoen- 
coding are discussed in Hertz, Krogh, and Palmer (1991). 

To model the original exclusivity asymmetry effect, we obtained 
data for training the networks from measurements of the original 
cat and dog pictures used by Quinn et al. (1993). These data are 
tabulated in the Appendix. There were 18 dogs and 18 cats 
classified according to the following 10 traits: head length, head 
width, eye separation, ear separation, ear length, nose length, nose 
width, leg length, vertical extent, and horizontal extent. Although 
it is difficult to say for certain which of these features the infants 
used during categorization, it is well known that infants can 
segregate items into categories on the basis of attributes with 
different values (Younger, 1985; see Quinn & Johnson, 1997, for 
a detailed justification of similar input features). The feature values 
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were normalized 3 to be between 0 and 1. The input data are 
discussed in more detail below. 

Twelve items from one category were presented sequentially to 
the network in groups of two (i.e., weights were updated in batches 
of two) to capture the fact that pairs of pictures were presented to 
the infants during the familiarization trials. Networks were trained 
for 250 epochs (weight updates) on one pair of patterns before 
being presented with the next pair. We did this to reflect the fact 
that in the Quinn and Eimas studies (Eimas, Quinn, & Cowan, 
1994; Quinn & Eimas, 1996a; Quinn et al., 1993) infants were 
shown pairs of pictures for a fixed duration of time. The total 
amount of training was therefore 6 x 250 = 1,500 weight updates. 
The results are averaged over 50 network replications, each with 
random initial weights. The remaining six items from each cate- 
gory were used to test whether the networks had formed category 
representations. 

Like infants, these networks form both Cat and Dog categories. 
Figure 2 shows the initial error score (i.e., the sum squared error 
between the actual output produced and the ideal target value, 
measured across all output units), the error score after 12 presen- 
tations of either cats or dogs, and the average error score (after 
training) for the six remaining exemplars in either the Cat or Dog 
category. After learning, error is lower, which suggests that the 
network has developed reliable internal representations of cats or 
dogs. The generalization error rises slightly, showing that the 
networks recognize these exemplars as novel. Infants are also able 
to distinguish individual exemplars within the category (Quinn et 
al., 1993). However, the generalization error remains well below 
the initial error, which suggests that the new exemplars are assim- 
ilated within the category representation formed by the networks 
across the hidden units. 

The Asymmetric Exclusivity of the Cat 
and Dog Categories 

Quinn et al. (1993) found that there was an asymmetry in the 
exclusivity of the Cat and Dog categories developed by infants. 
Figure 3 shows what happens when networks trained on cats are 
presented with a novel cat and a novel dog and when networks 
trained on dogs are tested with a novel dog and a novel cat. In these 
network models (as with infants), the acquisition of categorical 
representations is inferred from their differential sum-squared- 
error responses (preferential looking responses) when presented 
with a novel exemplar of the familiar category and when presented 
with a novel exemplar of the novel category. The differences in 

This is a common way of relating response times to network error 
scores (e.g., Mareschal et al., 1999; Quinn & Johnson, 1997; Seidenberg & 
McClelland, 1989; but see Bullinaria, 1995, for possible counterargu- 
ments). 

2 The parameter values were as follows: learning rate = .2, momen- 
tum = .9, and Fahlman offset = .1. A description of the role of learning- 
rate and momentum can be found in Plunkett and Elman (1997). The 
Fahlman offset is discussed in Fahlman (1988). 

3 This transformation preserves the covariation between cues, which is 
important because both infants (Younger, 1985) and autoencoder networks 
(Mareschal & French, 2000) have been shown to use covariation informa- 
tion in establishing category boundaries. 
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Figure 2. Mean error prior to familiarization, after familiarization, and on 
novel exemplars after familiarization for networks trained with cats or 
dogs. 

these error scores reflect the differences in looking times toward 
each of the stimuli that are observed with infants. 

When the networks are initially trained on cats, the presentation 
of a novel dog exemplar results in a large error score relative to 
that produced by the presentation of a novel cat exemplar; this 
corresponds to a longer looking time in the results observed with 
infants. Dogs are not included within the category representation 
of cats. In contrast, when the networks are initially trained on dogs, 
the presentation of a novel cat results in only a small increase in 
error relative to that produced by the presentation of a novel dog, 
which suggests that the cats have been included in the Dog 
category. Hence, the networks also show an asymmetry in the 
exclusivity of the category representations developed. 

It could be argued that the asymmetry arises from the unequal 
learning of the Cat and Dog categories by the networks. It may 
take longer to learn the Dog category than the Cat category; hence, 
training for a fixed number of epochs would lead to a less estab- 
lished representation of Dog by the networks. To address this 
possibility, we trained 50 new networks as described above but 
with one exception. These networks were trained to a fixed error 
criterion rather than a fixed epoch criterion. Networks were trained 
on each pair of familiarization exemplars until all output units 
were within 0.2 of their target values. 4 This ensured that the 
networks learned to autoencode every input to the same minimum 
criterion. Under these conditions, networks familiarized with cats 
showed average errors of 0.26 (SD = 0.05) and 0.45 (SD = 0.03) 
when presented with a novel cat and a novel dog, respectively, 
whereas networks familiarized with dogs showed average errors 
of 0.35 (SD = 0.15) and 0.4l (SD = 0.12) when presented with a 
novel dog and a novel cat, respectively. Thus, the exclusivity 
asymmetry persisted even when networks were familiarized to a 
fixed error criterion. 

Figure 3. Mean error on a novel cat exemplar and a novel dog exemplar 
for networks trained on cats or dogs. 

Distribution of Features in the Stimuli 

The associative learning mechanisms embodied in connectionist 
networks (and described by the mathematics of these networks), 
when coupled with the nonlinear response of hidden units, provide 
a mechanistic account of how information is processed in such a 
system. However, a full explanation of the asymmetric exclusivity 
requires an account of why the system learns a representation for 
cats that excludes dogs but learns a representation for dogs that 
includes cats. Connectionist networks extract the correlations be- 
tween features present in their learning environment. The distri- 
butional characteristics of the internal representations (developed 
across the hidden units) reflect the distributional characteristics of 
the corresponding categories in the environment, which suggests 
that an explanation for why the networks exhibit an exclusivity 
asymmetry may be found by examining the input data. Figure 4 
shows the probability distributions of the 10 traits, for both cats 
and dogs, when fit to gaussian distributions using means and 
standard deviations derived from the normalized feature values. 5 
Some of the traits are very similar in terms of their means and 
distributions for both cats and dogs (e.g., head length and head 
width). Others, especially nose length and nose width, are very 
different and will provide the crucial explanation for the unex- 
pected looking asymmetries reported by Quinn et al. (1993). 

Consider the single trait of nose width. The (normalized) mean 
nose width for the dog population is 0.53 with a standard deviation 

4 For practical reasons, a maximum criterion of 2,500 epochs (10 times 
the 250-epoch criterion) was used to terminate any simulations that failed 
to reach the 0.2 error criterion. This is analogous to the fact that, in 
practice, any study with infants has a fixed maximum duration. 

5 Although the fitted normal distributions may predict negative feature 
value (e.g., eye separation), the actual values used to train networks were 
always between 0 and 1. The negative predicted values reflect the presence 
of a skew in the underlying distribution of actual values. 
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Figure 4. Gaussian probability distributions generated from the means and standard deviations of normalized 
cat features (thin lines) and dog features (thick lines). The area under each curve sums to 1.0. 

of 0.20, whereas the mean for the cat population is 0.24 with a 
much smaller standard deviation of 0.07. Consequently, the nose 
width of virtually all cats in the population will fall within 2 SD of 
the nose-width mean for dogs. On the other hand, the nose width 
of the majority of dogs does not fall within 2 SD of the nose-width 
mean for cats. The result, in short, is that at least for this trait, all 

cats could be exemplars of dogs, whereas most dogs could not be 
exemplars of cats. 

When we examine all of the members of the two populations, 
we see that the values of all 10 traits for 9 (i.e., 50%) of the 
members of the Cat category fall within a 2-SD cutoff for those 
traits for the Dog category. Fully half of the cats in the population 
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could be reasonably classified as dogs. In contrast, the smaller 
means and lower variances of a number of traits (especially nose 
length and nose width) for cats compared with dogs means that 
only 2 of the 18 dogs (i.e., 11%) could conceivably be classified as 
members of the Cat category. 

A corollary of this finding is that networks will, on average, 
generalize their autoencoding responses better in the dog-to-cat 
direction than in the cat-to-dog direction. When presented with a 
novel cat, a network trained on dogs will recognize this item as a 
member of the category it has learned (i.e., Dog) and for which it 
has  also learned to output an appropriate feature description. In 
contrast, when presented with a novel dog, a network trained on 
cats will fail to recognize this item as a member of the category it 
has learned (i.e., Cat) and will be unable to output an appropriate 
feature description. 

The exclusivity asymmetry of the categories formed on the basis 
of these exemplars reflects the distribution of features character- 
istic of the cat and dog exemplars presented to the networks (and 
infants). The key feature of the data is that the distribution of 
values for the Cat features are (in general) subsumed within the 
distribution of Dog features. There are two components to these 
distributional characteristics: (a) The Dog distributions are some- 
times broader than the Cat distributions, and (b) the Cat values are 
often included within the range of Dog values. The greater range 
of Dog values is a necessary but not sufficient condition for the 
asymmetric exclusivity to appear. If, on the one hand, the Dog and 
Cat distributions had the same range, then there would be no 
exclusion in either direction. If, on the other hand, the Cat and Dog 
feature values had different ranges but no overlap, then there 
would be an exclusivity in both directions. To see this, suppose 
that the cats had feature values ranging on the interval [0, 0.25] and 
that the dogs had feature values ranging on the interval [0.5, 1.0]. 
Networks initially trained with cats would have no experience of 
processing clusters of values in the range [0.5, 1.0]. Thus, when 
presented with a novel dog input, they would mostly likely pro- 
duce a default value of the mean of their experiences (0.125) or the 
maximum of their range (0.25) along each dimension. Either result 
would yield a large error observed in response to a novel dog input. 
Similarly, networks initially trained on dogs would have no expe- 
rience of processing clusters of values in the range [0, 0.25]. When 
presented with a novel cat input, they would most likely produce 
a default value of the mean of their experiences (0.75) or the 
minimum of their range (0.5) along each dimension. Either out- 
come would result in a large error observed in response to a novel 
dog input. With no overlap in feature distributions, behavior con- 
sistent with symmetric exclusivity would be observed. 

The degree to which the inclusion relationship observed in the 
nose-width feature holds across the set of features determines the 
degree to which an asymmetric exclusivity effect is observed. It is 
not just the greater variability of dogs along certain feature dimen- 
sions that causes the exclusivity asymmetry. The inclusion rela- 
tionship with respect to cats also plays a crucial role. 

However, the asymmetry inherent in the data is translated into 
corresponding behavior only because connectionist networks (and 
presumably infants) develop internal representations that reflect 
the distributions of the input features. Thus, the internal represen- 
tation for Cat will be subsumed within the internal representation 
for Dog along several dimensions. It is because the internal rep- 

resentations share this inclusion relationship that an asymmetry in 
error (looking time) is observed. 

Simula t ion  2: Learning F r o m  Mixed  Exemplars  

Categories are rarely acquired in isolation. In contrast to infants 
presented with cats or dogs in a series of laboratory familiarization 
trials, infants engaged in casual observation of their nursery envi- 
ronments presumably do not encounter numerous objects from the 
same natural kind or artifactual category presented in close tem- 
poral proximity. Infants would be more likely to encounter mul- 
tiple objects from various categories in a quick scan of their 
immediate surroundings. The question that arises for researchers 
interested in the early development of categorization is how infant 
categorization performance will be affected when infants are pre- 
sented with instances from two or more categories in the same 
familiarization session. It can be reasoned that experiencing two 
categories during learning will enhance the formation of distinct 
categories because examples of one category will provide a con- 
trasting reference for learning the other category. Alternatively, it 
can be argued that presenting two categories simultaneously will 
create interference between them, thereby making the construction 
of a representation for each more difficult. 

The evidence that is relevant to the contrast and interference 
hypotheses is mixed. For example, in studies of the acquisition of 
dot pattern categories, the category representations formed by both 
adults and young infants were enhanced in experimental sessions 
in which multiple categories were presented (Homa & Chambliss, 
1975; Quinn, 1987; see also Younger, 1985, for consistent findings 
obtained with schematic animal stimuli). In these studies, the 
facilitative effect of multiple category presentation was attributed 
to the fact that it provided participants with the opportunity to 
observe both the similarities among members within a category 
and the differences between members of different categories. 
However, there are also data indicating that when more naturalistic 
exemplars are used as stimuli (i.e., realistic photographs of ani- 
mals), then multiple category presentation results in category rep- 
resentations that are either not different from or less differentiated 
than those formed during single-category presentation (Eimas & 
Quinn, 1994; takes ,  Plumert, Lansink, & Merryman, 1996; 
Younger & Fearing, 1999). 

To explore how connectionist networks would behave under 
conditions of multiple category presentation, we exposed autoen- 
coder networks identical to those in Simulation 1 to an interleaved 
set of cat and dog exemplars. Fifty previously untrained networks 
were exposed to eight cats and four dogs (the mainly cats condi- 
tion), and 50 previously untrained networks were exposed to eight 
dogs and four cats (the mainly dogs condition). The training 
procedure was identical to that in Simulation 1 with one exception. 
As before, the networks were presented with six pairs of exemplars 
over six familiarization trials. Networks were trained for a fixed 
250 epochs with each familiarization pair. However, on four of the 
six familiarization trials, one of the exemplars in the pair was taken 
from the contrasting category. For example, a network in the 
mainly dogs condition might experience the following series of 
familiarization pairs: c a t l - dog l ,  dog2-dog3, dog4-cat2,  cat3- 
dog5, dog6-dog7,  dog8-cat4.  In total, these networks experi- 
enced eight exemplars from the dominant category and four ex- 
emplars from the contrasting category. The trials on which an 
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exemplar from the contrasting category was presented were ran- 
domly selected, Networks were then tested with the remaining 
unfamiliar exemplars from the Cat and Dog categories, and their 
responses were recorded. 

Figure 5 shows the networks' response to a novel cat and a 
novel dog after having been familiarized in either the mainly cats 
or the mainly dogs conditions. In contrast to the proposal that 
experiencing exemplars from both categories during learning 
might enhance the separation of the categories, these networks 
showed the same asymmetric exclusivity effect as those trained 
only with cats or only with dogs. Networks familiarized with eight 
cats and four dogs showed much greater error when presented with 
a novel dog than with a novel cat, which suggests that they formed 
a category of  Cat that excluded dogs. The networks familiarized 
with eight dogs and four cats showed little difference in error when 
presented with novel dogs and with novel cats, which suggests that 
they formed a category representation that included both cats and 
dogs. 

It could be that this asymmetry is due to the fact that the Dog 
category is more difficult to learn than the Cat category. However, 
this is not the case, because networks trained to a fixed error 
criterion rather than a fixed epoch criterion showed the same 
asymmetry. The networks trained to a fixed error criterion in the 
mainly cats condition had mean errors of 0.32 (SD = 0,02) 
and 0.39 (SD = 0.02) when presented with a novel cat and a novel 
dog, respectively. The networks trained to a fixed error criterion in 
the mainly dogs condition had mean errors of 0.39 (SD = 0.02) 
and 0.38 (SD = 0.02) when presented with a novel cat and a novel 
dog, respectively. 

The persistence of the asymmetry (a) constitutes an explicit 
prediction of infant behaviors that derives from the associationist 
mechanisms of connectionist networks coupled with the charac- 
teristics of the stimuli used to familiarize infants and (b) provides 
a direct test of the model. 

Figure 5. Mean error on a novel cat exemplar and a novel dog exemplar 
for networks trained with mainly cats (8 cats and 4 dogs) or mainly dogs 
(8 dogs and 4 cats). 

Expe r imen t :  In fan t  R e s p o n s e s  to 

M i x e d - E x e m p l a r  Fami l i a r i z a t i o n  

The model makes two specific predictions. The first is that 
3-4-month-olds  familiarized according to the procedures of the 
mainly cats condition will show a significant preference for novel 
dogs over novel cats in a subsequent preferential looking test. The 
second prediction is that 3-4-month-olds  familiarized according to 
the procedures of the mainly dogs condition will show no prefer- 
ence for novel dogs over novel cats in a subsequent preferential 
looking test. We tested these predictions using the same cat and 
dog pictures encoded for Simulations 1 and 2. 

M e t h o d  

Participants. Forty-eighi 3-4-month-olds (27 boys and 21 girls) were 
participants (mean age = 103 days; SD = 15 days). Nine additional infants 
were not included in the analyses because of fussiness (n = 7), a position 
bias (>95% looking to one side of the display; n = 1), or a failure to look 
at both test stimuli (n = 1). 

Stimuli. The stimuli were 36 color photographs of cats and dogs (18 
exemplars of each category) previously used by Quinn et al. (1993) and 
Eimas, Quinn, and Cowan (1994). The pictures were cut from Simon & 
Schuster's Guide to Cats (Siegal, 1983) and Simon & Schuster's Guide to 
Dogs (Schuler, 1980) and were chosen to represent a variety of shapes, 
colors, and stances of both categories of animals. Each picture contained a 
single animal that had been cut away from its background and mounted 
onto a white posterboard (17.7 × 17.7 cm) for presentation. 

Apparatus. Infants were tested with a portable visual preference ap- 
paratus, adapted from that used by Fagan (1970). The apparatus consists of 
an enclosed viewing box with a gray display stage (85 cm wide and 29 cm 
high) that contains two compartments to hold the two posterboard stimuli. 
The stimuli were illuminated by a 60-Hz fluorescent lamp that was 
shielded from the infant's view. The center-to-center distance between the 
two compartments was 30.5 cm. A 0.625-cm peephole located midway 
between the stimulus compartments permitted observation and recording of 
the infant's visual fixations. 

Procedure. The infants were tested individually. They were brought to 
Paul C. Quirm's laboratory by a parent and were placed in a reclining 
position on the seated parent's lap. An experimenter wheeled the apparatus 
over the infant, keeping the infant's head centered with respect to the 
middle of the display stage. As soon as the infant was properly aligned and 
apparently at ease, a trial was begun. The experimenter loaded the stimuli 
from a nearby table into the stimulus compartments, elicited the infant's 
attention and closed the stage, thereby exposing the stimuli to the infant. 
The center of the display stage was approximately 30.5 cm in front of the 
infant while the stimuli were being viewed. During a trial, the experimenter 
observed the infant through the peephole and recorded fixations to the left 
and right stimuli using 605 XE Accusplit stopwatches, one held in each 
hand. The criterion for fixation was observing corneal reflection of the 
stimulus over the infant's pupil, lnterobserver reliability--determined by 
comparing the looking times measured by the experimenter using the 
center peephole with those measured by additional observers using peep- 
holes to the left of the left stimulus compartment and to the right of the 
right stimulus compartment--was high (Pearson r = .97). This reliability 
was derived from observations made by independent observers on 48 
novelty-preference test trials from 24 infants. This value is comparable to 
estimates of interobserver reliability obtained in other laboratories that 
measured visual fixation duration with the corneal reflection procedure 
(Haaf, Brewster, de Saint-Victor, & Smith, 1989; O'Neill, Jacobson, & 
Jacobson, 1994). Between trials, the experimenter opened the stage, re- 
corded the looking-time data on a data sheet, changed the stimuli (or their 
position), recentered the infant's gaze, and closed the stage, thereby be- 
ginning the next trial. Two experimenters recorded fixations, one during 
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familiarization and another during test trials. Both were trained research 
assistants who were naive to the hypotheses of the studies. The experi- 
menter recording during test trials was also unaware of the stimulus 
information that the infants were shown during the familiarization trials. 

The 48 infants were randomly assigned to one of two category presen- 
tation orders. Each infant in the mainly cats group was first familiarized 
with eight cats and four dogs, with exemplars of the contrasting category 
interleaved on four separate trials. The cats and dogs were randomly 
selected and different for each infant and were presented during six 15-s 
trials (two different animals per trial). After this first familiarization phase, 
infants were presented with a novel cat and a novel dog for two 10-s test 
trials. Left-right locations were counterbalanced across infants on the first 
test trial and reversed on the second test trial. Infants in the mainly dogs 
group were familiarized and tested in the same way as those in the mainly 
cats group except that they saw eight dog pictures interleaved with four cat 
pictures. 

Results 

Familiarization trials. Table 1 shows the mean fixation times 
averaged across the first three familiarization trials and the second 
three familiarization trials. An analysis of variance with factors of 
condition (mainly cats vs. mainly dogs) and trial block (1-3 vs. 
4 - 6 )  revealed no significant effect of trial block on the familiar- 
ization trials, F(1, 46) = 0.05, p > .20. Neither the effect of 
condition nor the interaction of condition and trial block was 
reliable; in both cases, F(1, 46) < 2.50, p > .12. These findings 
suggest that any differences in the preference test outcomes cannot 
be attributed to category-specific differential habituation rates. 

Preference-test trials. Each infant 's  looking time to the stim- 
ulus from the novel category was divided by the total looking time 
to both stimuli and converted to a percentage score. Mean novel- 
category preference scores are shown in Table 2. 

The model predicts that infants familiarized in the mainly cats 
condition will show a significant preference for a novel dog 
exemplar. The model also predicts that infants familiarized in the 
mainly dogs condition will show no preference for the novel cat or 
the novel dog. Inspection of Table 2 shows that these predictions 
were confirmed with 3-4-month-old  infants. The mean novel- 
category preference for novel dogs in the mainly cats condition 
was significantly higher than chance, whereas the mean novel- 
category preference for cg~s in the mainly dogs condition was not 
different from chance. In i~iddition, the novel-category preferences 
for the mainly cats and mainly dogs conditions were reliably 
different from each other, t(47) = 2.08, p < .05, two-tailed. 

In summary, these results support the model 's  predictions. In- 
terleaved learning was not found to consolidate the formation of 
two distinct categories. The asymmetry in novelty preference for 
cats and dogs, identified in the original Quinn et al. (1993) studies, 

Table 1 
Mean Fixation Times (in Seconds) and Standard Deviations 
During Familiarization Trials 

Trials 1-3 Trials 4-6 

Condition M SD M SD 

Mainly cats 11.02 2.56 10.44 2.99 
Mainly dogs 9.19 3.32 9.68 3.61 

Table 2 
Mean Novel-Category Preference for the Two 
Familiarization Conditions 

Familiarization condition 

Measure Mainly cats Mainly dogs 

Mean novel-category preference 58.32 47.73 
SD 19.40 15.56 
n 24 24 
t(23) (vs. chance) 2.10" -0.71 

*p < .025, one-tailed. 

persists even when infants are exposed to a small number  
of inter leaved exemplars  of a contrast ing category during 
familiarization. 

G e n e r a l  D i s c u s s i o n  

Like young infants, connectionist autoencoder networks formed 
categorical representations of cats and dogs when presented with 
the same stimuli as the infants. The category representations 
showed asymmetric exclusivity. The Cat category included novel 
cat exemplars but excluded novel dog exemplars, whereas the Dog 
category included novel dog exemplars as well as novel cat ex- 
emplars. The category asymmetry was suggested to be related to 
the distribution of features in the stimuli shown to the infants. 
More specifically, the asymmetry arose because the connectionist 
networks developed internal representations reflecting the overlap 
in the distribution of the features in the two sets of stimuli. Most 
of the cat exemplars could be classified as dogs, whereas most 
dogs were not plausible cats. The asymmetric category represen- 
tations reflect an interaction between the statistics of the learning 
environment (the images shown to the infants) and the computa- 
tional properties of an associative learning system with distributed 
representations. Infant performance in these categorization tasks is 
essentially driven by a bottom-up process. 

We also explored the exclusivity asymmetry by investigating 
whether the addition of exemplars from a contrasting category 
would enhance the formation of distinct Cat and Dog categories. 
Connectionist networks trained with eight exemplars from one 
category and four exemplars from a contrasting category continued 
to show asymmetric exclusivity in the categories developed. These 
results constituted a set of predictions about the behavior of 
3-4-month-olds  that enabled an evaluation of the model. Infants 
familiarized with the same mixture of cat and dog exemplars were 
found to show an asymmetry in their responses to novel cat and 
dog exemplars that was consistent with the model. 

The new evidence reported in the experiment strongly supports 
the connectionist account of early infant categorization. The asym- 
metry can be explained by appealing to the associative learning 
mechanisms of connectionist networks and the statistical distribu- 
tion of features in the stimuli used to familiarize infants. The 
connectionist mechanisms account for how the behavior emerges, 
and the input data account for why the behavior emerges in the 
presence of these cat and dog pictures. It could be argued that the 
analysis of the data alone provides the explanation of infant 
behaviors and that the network account contributes little to this 
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explanation. However, this is not the case. One can see this by 
trying to make predictions about how an unknown "black box" 
might respond to these same data. Without any information about 
the mechanisms that translate input into observed behaviors within 
the black box, it is impossible to construct an explanation of the 
box 's  behavior that will support such predictions. A full, causal 
understanding of behavior requires knowledge of both the 
information-processing mechanisms and the input data. 

It is also important to understand the limitations of this model. 
All models are approximations. Building a model is not the same 
as building an infant. We do not wish to suggest that all of infant 
visual cognition can be accounted for with simple autoencoder 
networks. Nor do we wish to suggest that the infant is essentially 
an autoencoder. We have used the autoencoder to model looking- 
time behaviors because autoencoders capture the representation- 
construction hypothesis implicit in verbal descriptions of habitu- 
ation (Charlesworth, 1969; Cohen, 1973; Sokolov, 1963). The 
simulation work in this article suggests that autoencoders are part 
of the same class of learning systems as those used by infants to 
learn perceptual categories (and therefore share their computa- 
tional properties). 

In summary, in this article we have reported on a connectionist 
model of infant visual categorization. Asymmetric category exclu- 
sivity was found to arise from a combination of connectionist 
information processing and the statistical distribution of features in 
the familiarization stimuli. The model predicted that asymmetric 
exclusivity would persist in the face of mixed-exemplar familiar- 
ization category learning. An empirical study with 3-4-month-  
olds confirmed the model prediction. 
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Appendix 

Measurements of Cat and Dog Stimuli 

The following measurements were made from the original Quinn, Eimas, and Rosenkrantz (1993) cat and dog photographs. These data were used to train 
and test the networks described throughout this article. 

Table  A1 

Measurements (in Millimeters) o f  Cat Exemplars 

Head Head Eye Ear Ear Nose Nose Leg Vertical Horizontal 
Exemplar length width separation separation length length width length extent extent 

cat 1 29 32 7 28 12 0 3 0 54 62 
cat2 12 13 4 12 5 3 2 14 25 50 
cat3 20 20 4 17 6 5 3 15 26 67 
cat4 13 17 4 17 5 3 2 28 28 46 
cat5 13 14 4 14 4 4 3 15 23 42 
cat6 18 22 3 17 6 6 3 24 42 70 
cat7 10 12 3 7 3 2 1 24 24 47 
cat8 23 24 5 26 7 4 4 25 50 64 
cat9 16 17 4 15 5 5 4 22 32 54 
catl0 16 15 3 12 8 3 2 15 30 65 
cat 11 19 27 5 20 8 4 3 22 71 57 
catl2 19 21 4 12 5 5 4 20 39 65 
cat 13 25 30 6 30 14 6 5 0 50 81 
catl4 16 20 3 16 13 5 3 26 29 59 
cat 15 17 27 5 22 5 3 3 28 40 43 
catl6 18 21 4 20 6 4 4 35 55 43 
catl7 23 22 5 24 7 6 4 35 52 56 
catl 8 20 22 5 23 7 5 4 28 34 54 
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Table A2 
Measurements (in Millimeters) of Dog Exemplars 

645 

Head Head Eye Ear Ear Nose Nose Leg Vertical Horizontal 
Exemplar length width separation separation length length width length extent extent 

dogl 16 22 0 0 16 6 7 25 21 53 
dog2 23 16 0 2 8 5 8 35 21 42 
dog3 16 16 4 13 5 7 6 25 26 64 
dog4 20 24 4 11 7 10 10 29 22 47 
dog5 15 22 4 0 20 10 6 31 34 55 
dog6 13 15 3 4 8 6 4 25 19 41 
dog7 15 20 3 5 9 8 5 28 26 60 
dog8 13 9 4 12 8 7 5 19 20 49 
dog9 15 21 3 10 19 3 3 32 20 46 
dogl0 33 30 11 37 12 3 4 40 50 66 
dog l l  17 17 5 13 6 7 5 28 22 55 
dogl2 29 21 6 31 15 15 13 31 28 58 
dogl3 19 15 6 20 19 10 9 34 46 44 
dogl4 25 20 6 28 15 10 8 28 30 55 
dogl5 21 24 7 0 15 10 8 20 32 49 
dogl6 23 20 7 23 15 8 6 26 34 36 
dogl7 16 21 6 0 10 7 10 28 21 62 
dogl8 14 22 3 0 15 9 6 24 26 30 
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