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Abstract

Three- to 4-month-old infants show asymmetric exclusivity in the acquisition of cat and dog percep-
tual categories. The cat perceptual category excludes dog exemplars, but the dog perceptual category does
not exclude cat exemplars. We describe a connectionist autoencoder model of perceptual categorization
that shows the same asymmetries as infants. The model predicts the presence of asymmetric retroactive
interference when infants acquire cat and dog categories sequentially. A subsequent experiment con-
ducted with 3- to 4-month-olds verifies the predicted pattern of looking time behaviors. We argue that
bottom-up, associative learning systems with distributed representations are appropriate for modeling
the operation of short-term visual memory in early perceptual category learning. © 2002 Cognitive
Science Society, Inc. All rights reserved.
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1. Introduction

Young infants can form well-defined perceptual category representations when presented
with a series of static visual stimuli (e.g., Bomba & Siqueland, 1983; Cohen & Strauss, 1979;
Mareschal & Quinn, 2001; Quinn, 1987). Even newborns can form primitive category repre-
sentations for simple visual forms (Slater, 1995) and 3- to 4-month-old infants can categorize
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a range of real world images of cats, dogs, horses, couches, and chairs (see Quinn & Eimas,
1996, for a complete review). However, the perceptual categories formed by young infants do
not always have the characteristics that might be expected from the corresponding adult cat-
egories. For example, Quinn, Eimas, and Rosenkrantz (1993) have found that, when shown a
series of cat photographs, 3- to 4-month-olds will form a perceptual category representation of
cat that excludes dogs, but when shown a series of dog photographs, the same infants will form
a perceptual category representation of dog that does not exclude cats. Similar asymmetries
have now been found with a range of different stimulus sets (e.g., Younger & Fearing, 1999).

In previous work, we have shown that early infant perceptual categorization is well ac-
counted for by the computational properties of an associative learning system with distributed
representations (Mareschal & French, 2000; Mareschal, French, & Quinn, 2000). We used a
connectionist autoencoder network to model cat and dog perceptual category learning by 3- to
4-month-olds. When exposed to the same stimulus set as the infants, the model developed cat
and dog perceptual categories that had the same exclusivity asymmetry as observed in infant
perceptual categories.

In distributed associative neural networks (such as the autoencoder model) categorization
arises as a by-product of information storage in a dynamic associative memory system (Knapp
& Anderson, 1984). As the associative learning mechanism attempts to encode individual stim-
uli, features with predictive value that are repeatedly presented are reinforced while features
that are unique to individual exemplars are overwritten by the successive presentation of differ-
ent exemplars. As a result, such networks develop an implicit prototype category representation
that reflects the distribution of features in the environment.

In this paper we extend our examination of simple connectionist networks as models of
infant perceptual category learning by investigating how these networks and young infants
cope with sequential learning of two similar but separable perceptual categories. In the real
world, categories are rarely learned in isolation. Hence, it is important to consider how the
order in which categories are learned may impact on their acquisition. The prior learning
of one category may facilitate the subsequent learning of a second category by providing a
contrasting reference that helps define the extension of the second category. Alternatively, the
prior learning of one category may inhibit the subsequent learning of a second category in
a manner analogous to proactive interference. Equally, the subsequent learning of a second
category may enhance the memory of the first category, or it may interfere with the stored
representation of the first category.

There has been little research on sequential perceptual category learning in infancy. One
notable exception is the work of Eimas, Quinn, and Cowan (1994) who suggested that learning
a second category should be easier than learning a first category because the first category serves
as a frame of reference against which to judge the instances of the second category. However, our
network account makes a different prediction. Because network learning involves successive
changes to a common weight matrix, connectionist networks are susceptible to retroactive
interference, a process in which subsequently acquired material overwrites previously acquired
material (see French, 1999, for a review). The degree of interference depends on the degree
of similarity between the old and new material. As a result, the degree to which learning a
second category will interfere with a previously acquired category will depend on the amount
of feature overlap in the two categories. Mareschal et al. (2000) reported that, in the images
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used to test 3- to 4-month-olds on cat and dog categories, the distribution of cat values were
largely subsumed within the distribution of dog values. This result suggests that the learning
of dog following the initial learning of cat will interfere with the initial cat perceptual category
(because the new dog exemplars will constitute items outside the cat perceptual category).
However, the learning of cat following the initial learning of dog will not interfere with the
initial dog perceptual category (because the cat exemplars constitute items within the dog
perceptual category). We tested these hypotheses, first in connectionist autoencoder networks,
then with 3- to 4-month-olds.

2. Building the model

Infant visual categorization tasks rely on preferential looking techniques based on the find-
ing that infants direct more attention to unfamiliar or unexpected stimuli. The standard inter-
pretation of this behavior is that the infants are comparing an input stimulus to an internal
representation of the same stimulus (e.g., Charlesworth, 1969; Cohen, 1973; Sokolov, 1963).
As long as there is a discrepancy between the information stored in the internal representation
and the visual input, the infant continues to attend to the stimulus. While attending to the
stimulus the infant updates its internal representation. When the information in the internal
representation is no longer discrepant with respect to the visual input, attention is switched
elsewhere. When a familiar object is presented, there is little or no attending because the infant
already has a reliable internal representation of that object. In contrast, when an unfamiliar
or unexpected object is presented, there is much attending because an internal representation
has to be constructed or adjusted. The degree to which the novel object differs from existing
internal representations determines the amount of adjusting that has to be done, and hence the
duration of attention.

We used a connectionist autoencoder to model the relation between attention and represen-
tation construction (Mareschal & French, 2000; Mareschal et al., 2000; Schafer & Mareschal,
2001). The network learns to reproduce on the output units the pattern of activation presented
to the input units. Learning in such networks is unsupervized because the (perceptual) input
signal also serves as the training signal for the output. Unsupervized autoencoder networks
have been found to match or outperform supervized networks on a range of natural classifi-
cation tasks (Japkowicz, 2001). The successive cycles of training in the autoencoder are an
iterative process by which a reliable internal representation of the input is developed. The reli-
ability of the representation is tested by expanding it, and comparing the resulting predictions
to the actual stimulus being encoded. Similar networks have been used to produce compressed
representations of video images (Cottrell, Munro, & Zipser, 1988).

We suggest that during the period of captured attention infants are actively involved in an
iterative process of encoding visual input into an internal representation and then assessing that
representation against continuing perceptual input. This is accomplished by using the internal
representation to predict what the properties of the stimulus are. As long as the representation
fails to predict the stimulus properties, the infant continues to fixate the stimulus and to update
the internal representation. Our modeling is based on the assumption that infant looking time
is positively correlated with network error.1



380 D. Mareschal et al. / Cognitive Science 26 (2002) 377–389

3. Sequential category learning in autoencoder networks

Data for training the networks were obtained from the original cat and dog pictures used
by Quinn et al. (1993) to test infant categorization.2 The 18-dog and 18-cat photographs
were measured along the following 10 perceptual dimensions: head length, head width, eye
separation, ear separation, ear length, nose length, nose width, leg length, vertical extent, and
horizontal extent. Although it is difficult to say for certain which features the infants are using
during categorization, it is well known that infants can segregate items into categories on the
basis of attributes with different values (e.g., Younger, 1985). The feature values (measured in
millimeters) were then normalized to range within 0 and 1. The resulting 36 (18 dogs and 18
cats), 10 dimensional continuous valued arrays were used to train and test the networks.

The networks used were standard 10–8–10 feedforward autoencoders trained using the back-
propagation algorithm with the following parameter values: learning rate= 0.2, momentum=
0.9, Fahlman offset= 0.1.

Twelve items from one category were presented sequentially to the network in groups of
two (i.e., weights were updated in batches of two) to capture the fact that pairs of pictures
are presented to the infants in experimental studies of perceptual categorization (Quinn &
Eimas, 1996). A network was trained for 250 epochs (weight updates) on one pair of patterns
before being presented with the next pair. This was done to reflect the fact that in the original
Quinn et al. (1993) studies, infants were shown pairs of pictures for a fixed duration of time.
The network was then tested a first time (T1) with a novel exemplar of the same category
and a novel exemplar of the novel category. As in the experimental procedures with infants,
higher error on (a preference for looking at) the exemplar from the novel category rather than
a novel exemplar from the same category is taken as evidence that the network has formed a
perceptual category representation that excludes exemplars from a novel category but includes
novel exemplars from the familiar category.

Following this initial phase, the network was trained on four exemplars (two pairs) of the
contrasting category. If the network had initially been trained on cats it was presented with
two pairs of dogs. If it had originally learned dogs, the network was presented with two pairs
of cats. Finally, the network was tested a second time (T2) with novel exemplars as in the
first test session. The network’s ability to autoencode a novel test stimulus accurately (i.e.,
to have low output error when presented with the novel stimulus) reflects the extent to which
the category specific information is encoded accurately in the connection weights. Hence,
the difference in the network’s performance at T2 as compared to T1 is a measure of the
amount of interference (or distortion of the category representations) that occurred as a con-
sequence of learning the intervening exemplars. The results reported below are averages over
50 networks.

Fig. 1a shows the difference between the network’s performance at T1 and T2, when (a) the
initial category was cat and the intervening category was dog, and (b) the original category was
dog and the intervening category was cat. For networks initially trained on cats, performance
at T1 shows much higher error for (a clear preference for looking at) a novel dog over a novel
cat. However, at T2 (following the intervening presentation of dog exemplars), this difference
is greatly reduced implying that there is no clear preference for looking at a novel dog over a
novel cat. The difference in response patterns at T1 and T2 is due to a substantial increase in
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Fig. 1. Response of (a) model and (b) infants to novel and familiar exemplars at tests T1 and T2. The differences
in height between the solid and hashed bars represent the degree of preferential looking at one or the other novel
stimulus under the different test conditions.

error to a novel cat at T2 as compared to T1. In short, the learning of dogs during the intervening
period has strongly interfered with the previously acquired internal representation of cats.

A markedly different pattern of behavior emerges from networks originally trained with
dogs. At T1, there is only a small difference in error for (no preference for looking at) a
novel dog over a novel cat. This finding replicates the results of Mareschal et al. (2000)
and is consistent with the empirical finding that 3- to 4-month-olds will show no significant
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preference for cats over dogs under these conditions (Quinn et al., 1993). At T2, the net-
works still show only a small difference in error for (no preference for looking at) a novel
cat over a novel dog. The subsequent learning of cats during the intervening period has not
interfered with the previously acquired internal representation for dog. The difference in re-
sponse patterns at T1 and T2 arises from a drop in error to novel cats at T2 as compared
to T1 that is due to the decreased novelty of cats. It is not due to a change in the error for
dogs.3

In summary, the subsequent learning of dog will interfere with a previously acquired repre-
sentation of cat, but the subsequent learning of cat will not interfere with the prior representation
of dog. The asymmetric interference can be traced to (a) the distribution of feature values in
the exemplars used to train the networks, and (b) the fact that network responses are based
on an internal representation that captures the distribution statistics in the original data (Baldi
& Hornik, 1989; Japkowicz, Hanson, & Gluck, 2000). In this data set, most cat exemplars
have feature values that fall within two standard deviations of dog values, whereas most dog
exemplars have feature values that fall outside two standard deviations of cat values (Mareschal
et al., 2000). Thus, most cat exemplars are plausible dogs, whereas most dog exemplars are
not plausible cats. There is no interference when cats are acquired following dogs because
this is equivalent to reinforcing exemplars that are consistent with the internal representation
for dogs. In contrast, learning novel dog exemplars interferes with the existing cat internal
representation because the new exemplars fall outside the internal representation for cats. The
asymmetric interference in sequential category learning provides an explicit model predic-
tion about how 3- to 4-month-olds will respond to the sequential presentation of cat and dog
photographs.

4. Sequential category learning in 3- to 4-month-olds

The model predicts that learning to categorize dogs will disrupt a previously learned category
of cat (as measured by a lack of preferential looking towards a novel dog at T2), whereas learning
to categorize cats will not disrupt a previously learned category of dog (as measured by the
absence of a change in novelty preference at T2). This stands in contrast to the representation
account suggested by Eimas et al. (1994).

4.1. Method

4.1.1. Participants
Forty-eight 3- to 4-month-olds (26 boys, 22 girls) were the participants (mean age= 3

months and 13 days;SD= 10 days). Nine additional infants were not included in the analyses
because of fussiness (n = 6), a position bias of >95% or more looking to one side of the display
(n = 1), or a failure to look at both test stimuli (n = 2).

4.1.2. Stimuli
The stimuli were 36 color photographs of cats and dogs (18 exemplars of each category)

previously used in Quinn et al. (1993) and Eimas et al. (1994).
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4.1.3. Procedure
Infants were tested in a visual preference apparatus consisting of a display stage with two

compartments to present the stimuli (Fagan, 1970). The 48 infants were randomly assigned to
one of two category presentation orders. Each infant in the cat-first group was first familiarized
with 12 cats, randomly selected and different for each infant, presented during six 15-s trials
(two different cats per trial). After this first familiarization phase the formation of a category
representation was tested with a novel cat paired with a novel dog. Following this test, the infant
was familiarized with 4 dogs, randomly selected and different for each infant, presented during
two 15-s trials (two different dogs per trial). Finally, following this second familiarization phase,
the infant was again presented with a preference test in which a novel cat was paired with a
novel dog. Each preference test was conducted in two 10-s trials. The left–right positioning of
the novel instance from the familiar category and the novel instance from the novel category
were counterbalanced across infants on the first test trial and reversed on the second test trial.
Looking time to the novel cat and novel dog was recorded for each preference test. Each infant
in the dog-first group was familiarized and tested in the same way as those in the cat-first
group except that dog pictures were presented during the first familiarization phase and cat
pictures during the second. The equipment, stimuli and procedures are described in more detail
in Mareschal et al. (2000).

4.2. Results

4.2.1. Familiarization trials
Table 1 shows the mean fixation times averaged across the first three familiarization trials,

the second three familiarization trials, and the final two interference trials. An ANOVA with first
familiarization category (cat vs. dog) by trial block (1–3 vs. 4–6) revealed only a significant
effect of trial block on the initial familiarization trials,F(1, 46) = 16.11, p < .001. This
result indicates that there was a reliable decrement in looking time from the first to the second
block of the initial familiarization trials, and provides evidence that both groups habituated
to the information presented during initial familiarization. Moreover, there was no significant
difference in the mean looking times during the interference trials for the cat-first versus
dog-first groups,t (46) = −0.37,p > .20, two-tailed. Together, these findings suggest that any
differences in the preference test outcomes cannot be attributed to category-specific differential
habituation rates.

4.2.2. Preference test trials
Fig. 1b shows the duration of infant looking times towards a novel cat and a novel dog

during the first (T1) and second (T2) preference tests for both the cat-first and the dog-first

Table 1
Mean fixation times (s) and standard deviations (in parentheses) during familiarization and interference trials

Group Trials 1–3 Trials 4–6 Trials 7–8 (interference trials)

Cat-first 10.78 (1.92) (cats) 9.44 (3.04) (cats) 9.86 (3.19) (dogs)
Dog-first 10.98 (2.92) (dogs) 9.35 (2.98) (dogs) 10.22 (3.47) (cats)
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groups. The pattern of looking time responses is strikingly similar to that of the model output
error. In all cases, infants look more at the test stimulus that produces the greatest error in
the network. In other words, the model captures exactly all trends in the data. In addition,
the model also predicts that the significant preference for the novel dog stimulus at T1 in the
cat-first group (reflecting that the cat perceptual category excludes dogs) should not be present
at T2. However, there should be no significant preference for a novel cat stimulus at both T1
and T2 in the dog-first group.

To test these predictions, the infant looking times were entered into an ANOVA with three
factors: novel stimulus (cat vs. dog) and test trial (T1 vs. T2) as within subject factors, and
group (cat-first vs. dog-first) as a between subjects factor. This analysis revealed a significant
three-way stimulus× group× test trial interaction,F(1, 46) = 6.01, p < .02. This was
the only significant effect (all otherF’s < 0.42). The three-way interaction was explored by
carrying out separate two-way ANOVAs with stimulus and group as factors at each level of
trial.

At trial T1, the two-way ANOVA revealed an interaction of stimulus× group,F(1, 46) =
4.71,p < .04, as the only significant effect (all otherF’s < 0.48). This two-way interaction
could be explained by comparing the looking times towards a novel cat and a novel dog within
each group. This latter analysis revealed that the infants looked significantly longer at the
novel dog than the novel cat in the cat-first group,F(1, 23) = 6.42, p < .02, but showed
no significant difference in looking times in the dog-first group,F(1, 23) = 0.97, p > .33.
These results replicate those reported in Quinn et al. (1993). They also reported that infants
familiarized with either cats or dogs will show a significant preference for a novel bird over a
novel exemplar of the familiarization category, and that the infants can discriminate individual
exemplars within the cat and dog categories. Taken together, these results lead to the conclusion
that the infants have formed a perceptual category representation of cat (in the cat-first group)
that excludes novel dogs and novel birds, but that they have formed a perceptual category
representation of dog (in the dog-first group) that excludes novel bird exemplars and includes
novel cat exemplars.

The critical issue is what happens to the pattern of looking times at T2. According to Eimas
et al. (1994), there should be a significant novelty preference in both groups, because the
presence of a contrasting category will help the infants separate the two categories in the
dog-first group. By contrast, the simulations suggest that there should be no significant novelty
preference in either group because the initial cat representation in the cat-first group will have
undergone interference from the newly encountered dog exemplars, whereas in the dog-first
group, the newly encountered cat exemplars will not have changed the dog representation. As
shown in Fig. 1, the pattern of looking time results is entirely consistent with the predictions
from the autoencoder networks. At trial T2, the two-way ANOVA revealed no significant
effects (allF’s < 2.2), confirming that there were no significant novelty preferences in either
the cat-first or the dog-first group at T2.

In summary, at the initial test T1, the infants familiarized with 12 cats showed a significant
preference for looking at a novel dog over a novel cat, whereas the infants familiarized with
12 dogs did not show a significant preference for looking at a novel cat over a novel dog.4

Both of these results are consistent with the previous finding that infants familiarized with
cats will form a perceptual category representation that excludes dogs, whereas infants that are
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familiarized with dogs will form a perceptual category representation that does not exclude
cats (Quinn et al., 1993). In contrast, at T2, the infants showed no significant preferences for
the test stimuli in either of the familiarization conditions.

5. General discussion

We presented a connectionist autoencoder model of sequential category learning. The model
predicted the presence of asymmetric retroactive interference when young infants learn cat and
dog perceptual categories sequentially. The subsequent learning of dogs will disrupt the prior
learning of cats, whereas the subsequent learning of cats will not disrupt the prior learning of
dogs. This is a strong model prediction since retroactive interference in sequential category
learning in infants has not been investigated before. The prediction of asymmetric retroactive
interference was found to hold true for 3- to 4-month-olds required to learn the cat and dog
perceptual categories sequentially.

The asymmetric interference can be traced to an inclusion relation in the distribution of
feature values for cat and dog exemplars used to familiarize infants in the experimental proce-
dure, and the fact that the hidden unit representations in the network reflect this distribution.
An analysis of the data explainswhyasymmetric categorization is observed in infant behavior
while the connectionist model explainshow that data gets translated into behavior. In other
words, the autoencoder model embodies a specific process account of how feature distribution
information in the environment gets translated, through learning, into observable behavioral
asymmetries.5

Knowing that there is an inclusion relation in the data is not enough to predict an asymmetry
in the behavior. Many computational systems could process the same data and not produce
an asymmetry in categorization. It is because the connectionist network develops internal
representations thatreflect the distribution of features in the datathat this behavior is observed.
This analysis is not dependent on our use of backpropagation to train the networks. We chose
to use backpropagation as a means of implementing gradient descent learning in a distributed
artificial neural network. Many other gradient descent network learning algorithms would result
in the same behavioral results (e.g., Ackley, Hinton, & Sejnowski, 1985; Grossberg, 1982).

An implication of this model is that much of early infant perceptual categorization is a
bottom-up process. In contrast to adults seeing photographs of cats and dogs, the infants
in these studies are responding to the stimuli solely on the basis of low level statistics (i.e.,
appearance of surface features and their frequency) and not the semantics of the representation.
This process is analogous to distribution sensitive category abstraction in adults (e.g., Fried &
Holyoak, 1984; Posner & Keele, 1970; Reed, 1972). Category learning by young infants (even
in natural kind domains) reflects a bottom-up data driven process rather than the acquisition
of “theories” or the unfolding of innate taxonomic structures.

This interpretation suggests an intriguing resolution to a long-standing debate on the ro-
bustness of infant short-term visual memory. During the late to mid-1970s, there was a debate
surrounding the robustness of infant visual memory. A number of labs (e.g., Deloache, 1976;
Fagan, 1973; McCall, Kennedy, & Dodds, 1977) suggested that infants suffer from substantial
forgetting if presented with new material during the retention interval. These studies relied
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on a habituation procedure. Infants were habituated to a first image (A). After habituation to
this image, they were habituated to a second image (B). After this second habituation phase,
infants were presented with A again. A release in habituation to A (as measured by a renewed
interest in A) was interpreted as suggesting that the intervening habituation to B had caused the
memory of A to disappear.6 The puzzling thing was that retroactive interference did not occur
with all stimuli. In some cases, interference occurred whereas in other cases it did not (Cohen,
Deloache, & Pearle, 1977; Fagan, 1977). The only conclusions from these studies were that
(1) it was necessary for the infants to encode B for interference to occur, and (2) interference
was related to the similarity between the images A and B. We believe that performance on
the perceptual categorization and memory tasks reflects the operation of the same information
processing mechanisms. Namely, it reflects the way in which information is stored in an asso-
ciative system with distributed representations and, therefore, performance on the two classes
of tasks is subject to the same interference effects.

Of course, this does not preclude the fact that infants have robust long-term memory. In-
deed, there is ample evidence of long-term retention in early infancy using a range of testing
methodologies (Bauer & Mandler, 1990; Nelson, 1995; Rovee-Collier, 1997). However, note
that even though adults have robust long-term memory, their short-term visual memory is also
susceptible to interference (Dempster & Brainerd, 1995).

In summary, this paper has reported on a connectionist model of infant short-term visual
memory and perceptual category abstraction. The model predicted asymmetric retroactive
interference in the sequential learning of perceptual categories by young infants. An empirical
study with 3- to 4-month-olds confirmed this prediction with cat and dog categories. Finally, the
model highlighted how constructing computational models helps further our understanding of
cognitive development by providing a tool for synthesis across multiple domains and a bridge
between processing in infancy and adulthood.

Notes

1. Although the current model can explain looking times to stimuli when they are presented
one at a time, it does not capture the pattern of shared looks that occurs when two stimuli
are presented in pairs as is the case in preferential looking tasks. However, the current
model can easily be extended to account for this case by assuming that competition
occurs for attention to either one of the two stimuli. A system that looks first at the
stimulus with the least output error, and continues to look at that stimulus until error
has dropped below some threshold, then shifts to looking at the second stimulus (with
higher initial error), will capture the classic pattern of looks in preferential looking tasks.
Indeed, infants initially look at the familiar stimulus, followed by a longer look at the
novel stimulus, resulting in greater total looking towards the novel stimulus (Hunter,
Ames, & Koopman, 1983).

2. A full description of the raw data, including details of the frequency distributions can
be found in Mareschal et al. (2000).

3. This asymmetric interference could be due to unequal initial learning of the dog and
cat categories by the networks. However, the same pattern of results (asymmetric
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interference) was also found in networks trained to a fixed error criterion, ensuring
that both categories had been learned equally well.

4. Developmental psychologists have traditionally reported proportional looking times
when reporting novelty preferences. In this article, we have reported the raw looking
times to highlight the match between the model and the infant’s behaviors. However, the
proportional looking times revealed the same pattern of results. In the cat-first group,
the novel category preference scores at T1 and T2 were 56.98% (SD = 13.16) and
46.63% (SD = 19.87), respectively, whereas in the dog-first group, the novel cate-
gory preferences were 51.75% (SD = 19.63) and 44.73% (SD = 17.89). The only
novelty preference significantly different from chance was the preference for a novel
dog exemplar shown by the cat-first group at T1,t (23) = 2.60, p < .02, two-tailed.
The results at T1 replicate Quinn et al.’s (1993) findings and are consistent with their
conclusions that infants have formed a perceptual category representation for cats that
excludes dogs and a perceptual category representation for dogs that includes cats. This
conclusion is also informed by the fact that these infants do not show a prior pref-
erence for cats or dogs, and that they do show a novelty preference for novel bird
exemplars.

5. See Luce (1995) for a discussion of the differences between process models and norma-
tive or descriptive models.

6. This is analogous tocatastrophic interference, in which the learning of one set of
associations interferes catastrophically with a previously learned set of associations,
a phenomenon that is also well documented in connectionist networks (French,
1999).
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