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Abstract

Computer-assisted vision plays an important role in our society, in various fields such as personal and goods safety, industrial

production, telecommunications, robotics, etc. However, technical developments are still rare and slowed down by various factors

linked to sensor cost, lack of system flexibility, difficulty of rapidly developing complex and robust applications, and lack of

interaction among these systems themselves, or with their environment. This paper describes our proposal for a smart camera with

real-time video processing capabilities. A CMOS sensor, processor and, reconfigurable unit associated in the same chip will allow

scalability, flexibility, and high performance.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the progress of technology, today it is possible
to design a camera which integrates real-time image
processing capabilities in order to capture not only the
video data but pertinent information in the scene. Two
main smart camera approaches have been proposed: (1)
retina and (2) general-purpose vision chips. Retina
consists of integrating some low-level image processing
into the pixel. These smart sensors integrate focal plane
processing elements made of tens of transistors doing
image processing such as image quality improvement,
image filtering, edge detection, movement estimation,
etc. [1]. Indeed, image quality, for perception applica-
tions, is not only fidelity to the original optical image but
the use of the full signal range in order to avoid
saturation. While this is difficult to do with normal
sensors, retina can easily satisfy these criteria. Classi-
cally, histogram equalization is one way to do this. In [2],
the authors describe a smart sensor that makes
histogram equalization during image acquisition for a
e front matter r 2005 Elsevier Ltd. All rights reserved.
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cost of about 10 transistors. Another method, completely
different, is proposed in [3]. It features a feedback loop
that attempts to maintain a constant voltage across the
photo-diode by giving it a current approximately equal
to the photo-current. Early vision computations are edge
detection, convolution, correlation, motion estimation,
and velocity estimation. All these applications use
physical phenomena in CMOS transistors such as
diffusion and propagation. These applications are best
adapted to highlight the advantages and the performance
that we can reach with processing circuits in the focal
plan. Movement information is provided in output of the
sensor and can thus be used to set up an alarm (remote
monitoring) or to generate a reaction (robot). Further-
more, interpretation of the movement (optical flow)
calculated within the sensor will make it possible to
control an autonomous vehicle: for example, without
passing by an interpretation block. The benefit of
compactness is obvious. In pattern recognition and
object description, due to very complex shapes that
cannot be embedded in hardware, programmable retina
are needed. These kinds of retinas can be considered as
SIMD array processors. In [4], the description of a smart
sensor performing binary operations is given. Operations
are boolean (AND, OR, XOR) as well as morphological
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ones. Another application is fingerprint sensing and
identifying [5]. In this circuit, sensing elements are
stacked above the identifier. The result is that each pixel
has is own identifier. The circuit has a performance time
of 102ms for sensing and identification. In the work
presented previously, the vision chips were designed to
perform a specific process or very simple operations.
The second smart sensors architecture solution couples

sensors and general-purpose processors. This allows
complex applications and flexibility. Often, a vision
algorithm needs more than one process; retina can help
but are not sufficient. All the works described below
implement general-purpose processors. In [6], the authors
describe a vision chip where each pixel contains a
processing element composed of a bit-serial ALU, a 24
bit random access memory and an 8 bit memory mapped
I/O. This circuit performs edge detection in 5:6 ms and
smoothing in 7:7ms. The SCAMP architecture [7] is a
mesh array of analogue processing elements (APE). A
21� 21 SCAMP vision chip has been fabricated and
performs smoothing in 5:6ms and edge detection in
11:6ms. The chip presented in [8] is especially designed for
block-wise transformation (DCT) or spatial convolution.
It performs operations using an 8� 8 kernel. A 128� 64
pixel sensor has been designed in 0:6mm technology.
Another chip based on cellular neural networks (CNN),
called ACE16k [9], uses a 128� 128 cell array. Each
processing element (PE) is a Mixed-Signal SIMD-CNN
that is able to compute 3� 3 convolutions, boolean and
arithmetic operations, and CNN-like evolutions.
We see in this section that research into vision-chips is

active. However, the presented solutions (retina and
general-purpose processors) seem to have difficulties in
fulfilling all the vision applications. The retinas offer the
advantage of compactness and are very efficient for early-
vision process, but due to limited space, functionality is
very poor and often limited. Vision chips based on
general-purpose processors enhance possibilities due to
programming features but their performance is inferior in
terms of size and speed. Considering the constant
evolution of CMOS technologies, integrating a full digital
processing array into a sensor chip is now plausible.
In this paper we present our proposal for a smart

camera. We choose to integrate in the same chip a sensor
with high parallel outputs and an SIMD array of
processors. Our processor model is specifically dedicated
for vision application and is optimized for some criteria like
silicium area and speed-processing. In Section 2 we describe
the architecture of our smart camera, and in Section 3, we
present the modeling and validation of this architecture.
Fig. 1. Modeled architecture scheme.
2. Camera design

As we have seen in the previous section, the two
approaches described are not satisfactory. Indeed,
retinas, even if they offer processing levels very close
to sensors, cannot deal with complex applications. They
are well suited for early vision processing and can be
useful in speeding up processes. General-purpose
approaches, if they allow more complex algorithms, do
not have the same performance as retina.
A second remark concerns the readout capabilities of

vision chips. Although they perform their computation
in an SIMD scheme, they often send pre-processed data
sequentialy. This is an important bottleneck in the
datapath and reduce considerably the available band-
width.
The third remark we can make is that there are few

pertinent data in an image. In image computing, most
applications work on objects of interest, e.g. Data-
Matrix, land-mark detection, people tracking, finger
print recognition. Consequently why process the re-
mainder of the image?
In order to answer these questions, we choose to use a

sensor with Region of Interest (ROI) readout and
parallel outputs capabilities. It is linked to RAM or an
array of processors that are able to store/compute
provided data in order to provide an efficient way of
acquiring and computing ROIs. We give the scheme of
our architecture in Fig. 1 and the following sub-sections
describe more accurately the different parts.
2.1. Sensor with multiple digital video outputs

The sensor is based on CMOS technology which
allows random access to the pixels. However, a more
important feature is being able to access an image sub-
region in a single step. The same concept (ROI) is used
in [10]. The authors present a sensor that can provide
regions in outputs but also it can do tracking. The size
and position of ROI can only be changed by steps of 32
pixels in order to save chip area. However, a more
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Fig. 2. Scheme of the RAM.
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accurate step can be useful in motion-based algorithms.
Data are read 4� 4, and although it is better than 1� 1,
this does not offer a very high-speed bandwidth. In
order to answer this, the sensor is designed to provide
4096 pixels in parallel. Indeed, future CMOS technol-
ogies (90 nm and less) will not only reduce the size of
transistors but also the size of links in metal layers. In
our case, we want to integrate all of our architecture into
the same chip. Submicronics technologies can help us—
it is possible to output many more links inside the chip
than outside it. For example, in 90 nm process, the size
of a link in metal 2 is 0:30 mm and the pitch is 0:28mm.
That means that our 4096 bytes require about 20mm of
silicium to be output in metal 2 layer, i.e. a square of
25mm2. The readout circuit allows only square windows
up to 64� 64 pixels in one clock cycle to be sent to the
RAM or to the network. Another advantage, outputting
in parallel, is the reduced operation frequency of the AD
converters, and thus they can be simpler.

2.2. Choice of network

The choice of our network is an important part of our
system. Indeed, if we are not able to efficiently provide
the data to processing elements, or if the link between
sensor and PE array is a bottleneck, the system will
suffer from an important loss of performance. Cross-
bars are efficient systems for providing data, but their
cost in area increases with n2 when the number of inputs
is high. So, we decide to use a partial cross-bar. Its rule
is to dispatch data coming from the memory or the
sensor to the processor array. In the 64� 64 window it
selectively chooses a smaller window of up to 8� 8
pixels from anywhere inside the larger window. It can do
this operation for the 8 PEs (processing element) at the
same time. This means that 64� 8 pixels can be sent
within a clock cycle.

2.3. RAM design

In this system, the choice of dual-port RAM seems to
be an interesting solution. Indeed, such memory can
read and write at the same time. The memory capacity is
128� 64 bytes. One port linked to the sensor or the
network via the multiplexer is 4096 bytes large. This
allows the memory to store a window in one clock cycle.
Its operation is classical: a clock, an address word, and
read/write signals. The second port is quite different and
is 8� 64 bytes large. It is linked to each PE. It has a
clock, read/write signals and a command word. A
scheme of the RAM inputs and outputs is given Fig. 2.

2.4. PE description

These PE are designed to execute as efficiently as
possible some basic operations often found in vision
applications. Indeed, vision applications are focused on
one or more very small parts of the image. Examples of
application are the JPEG compression that uses 8� 8
windows or land-mark detection. That is why we have
decided to design a processor that can achieve opera-
tions on windows. We choose a 8� 8 maximum window
size that can be processed by a PE but we can envision
grouping the PEs to process larger areas. Implemented
operators are arithmetic and logic, mask filtering,
convolution, and correlation. The operators can be used
variously. Arithmetic operation can be done between
two different windows or between a window and a
constant. Each 8-bit processing core in Fig. 3 corre-
sponds to the scheme presented in Fig. 4. These cores
are divided into three parts. The first part is an 8-bit
Arithmetic and Logic Unit (ALU). It works on integer
values for this first implementation. The second part is a
shift register that performs a power of 2 division. For
the third part, we chose to use MAC structure in the
filtering unit in order to process data efficiently. We
have also added three registers, called FRC1, FCR2,
and FRC3 in Fig. 4, in order to store coefficients of
different filters. These registers can only be used by the
Mask filtering unit. It also contains three shared byte
registers (R1, R2, and R3 in Fig. 4) in order to store
data between two operations and 8 internal 8 bits
registers to store data used in computation. Despite
having three different units in the core, these units
cannot currently operate at the same time. For example,
in addition, a mask filter operation, and a shift is not
possible. The global PE also contains a 256-byte register
for table operations (like histograms), and a code-cache
in order to store the applications. Available operators
are given in the Table 1.
Applications are written in pseudo-assembler code

and are all coded like this:
�
 A key word: avr for averaging, add for addition, etc.

�
 A string giving the correct 64� 64 window to be
outputted by the sensor.
�
 A string indicating the memory bank to be accessed.

�
 4 numbers giving the configuration of the network:

XY position and XY size of the window to be
outputted.
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Table 1

Instructions availables in the processors

Instruction Description Instruction Description

adr Addition registers function add Addition function

mul Multiplication function divr Divison function

abs Absolute value function sqr Square value function

impd Import data function ld Load constant in register

cp Copy data function cmp Compare function

max Maximum function or Or function

and And function ml Load data from memory

sum Sum function dec Decrease function

inc Increase function bne Branch if not equal

bm Branch is greater sub Substraction function

sto Store in memory function avr Average function

mas Filtering function thr Threshold function

not Logical not function end Stop function
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For example
add r
0 m0 0 0 8 8 // addition.

hst /
/ histogram of the preceding result.

thr 4
5 // threshold according to the value given in

argument
will do the addition of the upper-left window of the sensor
image and a upper-left window of an image stored in
memory bank 0. Some instructions like histogram compu-
tation or image thresholding are directly done in the image
stored in memory and do not require additional parameters
or data. A very simple scheme of a PE is given in Fig. 3.
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2.5. Controller task

The controller’s role is to manage all the other parts
of the system. It generates command signals depending
on requests coming from the PEs. It drives image
acquisition and storage in memory, sends start com-
mands to the PEs, and manages all the access to the
memory. It can be compared to an interrupt controller.
While waiting for requests or events from all the other
parts of the system, it does not process anything but it is
programmed, depending on the application, to acquire
and store one or more image. Its exact operation will be
described in detail in Section 3.
Fig. 5. Motion detection example (from left to right: input image,

average of 4 images, substraction, threshold, morphological opera-

tions, result: labeling).
3. Architecture modelization and validation

In order to study our concept we decided to model it
in System C [11]. Simulation times are faster using
this C++ library than in VHDL. Another advantage is
the high-level description possibility. So we can make a
full software functional model as a first step and as a
second step we will refine it using hardware software
co-simulation. In order to validate our architecture,
we tested it on a motion detection application. We
present hereafter first the application, second some
parameters used in the model, third the active parts
of the architecture during the runtime, and fourth the
results.

3.1. Application description

This application concerns simple motion detection. In
order to do this, we first make an average of 4 images in
order to reduce noise and after we substract the average
from a reference image. The result is thresholded and
some morphological operations (erosion, dilation, ero-
sion again to eliminate residual noise) are done. We
count the number of moving objects, if this number is
different from the reference, the reference image is
updated. This application is illustrated in Fig. 5.

3.2. Preliminary

We present now several global parameters used in our
model. They are used to configure the model operation.
All are in binary representation
�
 Sens_PosX and Sens_PosY correspond to the upper
left corner of the window outputted by the sensor.
�
 Net_WidthX and Net_WidthY give the size of the
window transmitted by the network.
1All gray parts in Fig. 6 illustrate active parts in the system.

�

2This value has been chosen arbitrarily in order to simulate delay in
Net_PosX and Net_PosY code the position of the
outputted network window in the sensor window.
data transmission.
�
 Mem gives the memory bank address.
3.3. Model operation during runtime
After a reset the controller sends an acquisition signal
to the sensor. It starts image acquisition according to the
programmed exposure time and returns an ‘‘end
acquisition’’ signal. This is the first step as described
Fig. 6a.1 When the controller receives the ‘‘end of
acquisition’’ information, it starts, in the case of our
application, a memorization sequence, i.e. it sends a
Sens_PosX þ Sens_PosY word to the sensor. The LSB
bits are the X -coordinates of the window outputted and
the MSB bits are the Y -coordinates as shown in Fig. 7a.
After two clock cycles2 valid data are available in the
output of the sensor and the controller sends a Mem bits
address word to the memory to store the data. At this
time the multiplexer is configured to transmit data
between the sensor and the memory. This is the second
step shown in Fig. 6b. When acquisition is done, the
controller sends a start command to the PEs as shown
Fig. 6c. The PEs start their code execution and
depending on the instruction, generate a request. A
request is a 32-bit word
�
 The LSB bit indicates that requested data should
come from the sensor (if 1) or memory (if 0).
�
 The Net_WidthX þ Net_WidthY next bits gives the
size of the window for the network.
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(a) (b)

(c) (d)

(e)

Fig. 6. System operation sequence: (a) Step 1: image acquisition, (b) Step 2: image storage, (c) Step 3: PE ask for data, (d) Step 4: data are sent to PEs

and (e) Step 5: result.

(a) (b)

Fig. 7. Sensor command and request word structure: (a) sensor command and (b) request structure.
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�
 The Net_PosX þ Net_PosY next bits gives the
coordinate of the top left corner of the window in
the network.
�
 The Mem next bits correspond to the memory
address bank.

If the PEs ask for data from the sensor the controller sends
a command to the sensor to output the correct window. It
puts the multiplexer in the right configuration and sends a
configuration word to the network. If memory data are
requested, an address is sent to the RAM instead of the
sensor and the data path is configured to transmit data
from the RAM to the PEs. This case of operation is shown
in Fig. 6d. As long as the program does not meet an end

instruction, the functioning states are Figs. 6c and d:
request and answer. When PEs have finished their process
(in the example, averaging of 4 images, substraction,
thresholding, and morphological operations), they store
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their results directly to the memory (see Fig. 6e). They send
a command word coded like this:
�
 the Net_WidthX þ Net_WidthY bits for the window
size.
�
 Net_PosX þ Net_PosY bits for the window position
in the memory bank.
�
 Mem bits for the bank.

Finally, PEs send an ‘‘end of process’’ signal to the
controller. When all PEs are inactive a new image can be
acquired and the process sequence restarted. Our model
is configured with the following parameters.
�
 Sens_PosX ¼ Sens_PosY ¼ 9 bits.

�
 Net_WidthX ¼ Net_WidthY ¼ 4 bits.

�
 Net_PosX ¼ Net_PosY ¼ 6 bits.

�
 Mem ¼ 5 bits.
3.4. Results

The diagram shown in Fig. 8 illustrates the operation
of our model. It shows, in the case of motion detection
Fig. 8. Functioning diag
application, the two important sequences of our model.
The first one is the image acquisition. In this configura-
tion, we see that the active signals are adress[5:0],
addr_ecr_mem[5:0], . . . showing acquisition of image
and storage to the RAM. The second part is the image
processing: here all the signals are active especially the 8
commande[19:0] signals (command to the network) and
demande signals (corresponding to a resquest from a PE
to the controller).
The first result we obtained is the acceleration of the

data storage in memory. It is done with steps of 4096
pixels. This means that if we use a 10 ns clock for the
system and 1K� 1K sensors, 256 clock cycles are
needed to store a full image. The theoretical maximum
bandwidth between the sensor and the RAM is
2:56 ms� 1K� 1K ¼ 409:6GBytes. It is interesting to
note performance obtained with this architecture. An
operator needs 3 clock cycles in order to output data
processed in the worst case (data need to be received and
stored for all the instructions): one to receive data, one
to process them, and one to send them to memory. For
example, a dataflow application with 5 different
tasks requires 15 cycles to process 8� 64 pixels. So a
1K� 1K image will be processed in 30 720 cycles:
ram of the system.
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ð1K� 1KÞ=ð8� 64Þ � 15 cycles. If we choose a 10 ns
clock, it will take around 0.3ms to finish the treatment.
In this case more than 3000 images could be processed in
a second.
4. Conclusion and perspectives

We have described a new architecture for a smart
camera offering very high-speed processing capabilities.
This is done by designing dedicated parts such as sensors
with massively parallel outputs and ROI readout
circuits. The processor array takes care of vision
applications and has specific operators such as mask
filtering, convolution, etc. A fully functional software
model has been created in SystemC and tested using a
motion detection application.
Future works will be other test applications imple-

mentation on the architecture (JPEG compression,
motion estimation, etc.). A second part could be the
insertion in the network of one or more floating point
units in order to target applications that require more
accuracy. The reconfigurable logic in the PE that can
help us to design some specific processes even after a
chip design are not yet integrated. We plan to make a
prototype with reduced parallel output (16� 16 parallel
outputs). A VHDL translation of the SystemC archi-
tecture model is in progress. The processor cores need
some work in order to operate well. This VHDL code
will be implemented in a 0:35 mm CMOS process using
Mentor Graphics software.
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