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Abstract

With the enormous growth in digital audiovisual (AV) information in our life, there is an important need for tools which enable describing the
AV content information. In this context, the MPEG-7 standard was developed in order to provide a set of standardized description tools which
generate metadata about AV content. However, before any content-based manipulations, the hierarchical structure of video must be determined.
This process is known as shot boundary detection or in other case scene change detection. In this paper, an old and reliable method based on local
histogram has been used to implement shot cut detector for real-time applications. Since software implementation on PC is not suitable for this
algorithm due to the sequential treatments of the processor, we have used an FPGA-based platform.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Video data is becoming very important in many application
domains such as digital broadcasting, interactive-TV, video-on-
demand, computer-based training, and multi-media processing
tools. Furthermore the development of the hardware technology
and communications infrastructure has made automatic analyz-
ing of video content very challenging.

In this work, which is part of a project thesis, we present the
different steps of the hardware implementation of shot cut detector
based on local histogram algorithm. This old and reliable
approach is a descriptor in the MPEG-7 standard. The objective
of the MPEG-7 (“Multimedia Content Description Interface”)
standard is to specify a standard set of descriptors and description
schemes for describing the content of AV information. It specially
standardizes a number of description tools which describe AV
content ranging from low-level features to high level semantic
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information. In other words, it provides a set of standardized
description tools which generate metadata (data about data) about
AV content by extracting information of interest from it, to
facilitate a variety of applications including image and scene
retrieval [1]. In this context, the local histogram approach
constitutes a low-level feature which is utilized for video
segmentation and image and scene retrieval. In order to develop
any content-based manipulations on video information, hierarch-
ical structure must be determined. In this way, a standard
hierarchical video model was defined as shown in Fig. 1. This
model is composed of some elementary units as scenes, shots, and
frames. In this structure a shot is defined as an unbroken sequence
of frames from a single camera, where a scene is a set of shots with
semantic link, location unit and action unit [2].

In produced video such as television or movies, shots are
separated by different types of transitions, or boundaries.
Although well known video editing programs such as Adobe
Premiere or Ulead Media Studio provide more than 100 different
types of edits, we classify in general transition effects into two
categories [3]. The simplest transition is a cut, an abrupt shot
change that occurs between two consecutive frames. Gradual
transition such as fades and dissolves are more complex. Shot
boundaries are fades when the frames of the shot gradually change
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Fig. 1. Standard hierarchical video model.

from or to black, and can be dissolved when the frames of the first
shot are gradually morphed into the frames of the second [4].
Fig. 2 shows an example of transition effects.

Most of the existing methods of video segmentation have to
challenge the difficulty of finding shot boundaries in the
presence of a camera or object motion and illumination
variations which can lead to false detection. In other cases,
frames that have different structures but similar color distribu-
tions can give a missed detection [5]. The study of the state of
the art shows that several methods for SBD were proposed.
These methods can operate in different environments such as
temporal, frequency, uncompressed and compressed domains.

On the other hand, Dailianas and Lefévre [6,7] have
distinguished two classes of methods: Those which could be
done off-line and have high complexity, and others which are
dedicated for real-time applications. In this case, some
constraints have to be taken into account. In this paper we
have used an old and reliable method based on local histogram
and proposed by Nagasaka and Tanaka [8]. They have divided
each frame into 16 blocks and computed local histogram before
evaluating a difference metric. Histogram-based methods have
shown a good performance for shot cut detection.

To operate in real-time condition, computational time of the
difference metric mustn’t exceed the blanking time which is
about 2 ms. Since software implementation on PC is not
suitable for the local histogram algorithm due to the serial

architecture of the microprocessor, we have designed our
system on a hardware platform based on Virtex xcv800 FPGA.

This paper is organized as follows. In Section 2 we present
the different methods proposed for the detection of the abrupt
shot changes. Section 3 describes the specifications of the local
histogram method which we tested on a set of video sequences,
in different color spaces, different types of quantization and
different formats of sub-sampling. The concept of the hardware
design and the interpretation of the hardware implementation
results are presented in Section 4. Finally Section 5 brings the
conclusions and the future works.

2. Related work

An important variety of shot boundary detection algorithms
was proposed in the last decade. The study of the current state of
the art shows that we can classify these algorithms into three
generations. The first generation concerns methods which
measure distance of similarity between adjacent frames by
using elementary features extraction such as pixel differences,
global and local histogram differences, motion compensated pixel
differences and DCT coefficient differences [9—12]. In the second
generation, hybrids of the above methods have been investigated
[13—15]. In this way J. S. Boreczky [16] has combined audio and
video features in a hidden Markov model to increase the shot
change detection. Although these techniques have brought
improvement to the quality of shot change detection, they
increased complexity and computational time. The most recent
algorithms have introduced intelligent algorithms such as fuzzy
approaches and those based on neural network [17,18].

To compare the ability of real-time or close to real-time
implementation of the different methods, Dailianas [6] has
evaluated the complexity of many approaches by estimating the
number of operations when measuring dissimilarity between two
consecutive frames. In this way, he has used an assumption that
addition, subtraction and multiplication require time equivalent to
one operation, whereas divisions take approximately four times

(a) Cut transition

Shot k+1

(b) Dissolve transition

Fig. 2. Example of transition effects.
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Table 1 Table 3

The test video set Results of dissolve detection for different color spaces

Video Duration Dim. Cuts Dissolves Video RGB (%) YC,C: (%) CpC; (%) Gray (%)
Soccer 30 s:10 216x192 20 - Doc. 50 33 33 50

Clip 25 s:01 320x288 11 - Movie 46 46 30 38

Doc. 58 s:10 352x288 7 6 Com. 100 100 100 100
Movie 58 5:09 352x288 15 13 News 33 33 33 66
Com. 45 5:80 160%120 31 3 Average 57 53 51 62
News 1:01 384 %288 7 3

Cartoons 1:10 640 %480 23 1

more. Implementation issue such as assignment of variables to
registers, use of pointers and arrays, memory access time and
others, are ignored.

In the following sections we denote N as the number of levels
(bins) of pixel value and P the number of pixels per frame.

3. Video segmentation: case studies
3.1. Local histogram specifications

The color histogram for an image is constructed by counting the
number of pixels of each color. More formally, the color histogram
is defined as the probability mass function of the image intensities.

To increase the quality of shot change detection block-based
methods were proposed [8,19-21]. The main advantage of
these methods is their relative insensitivity to noise and camera
or object motion.

In this work we have used the approach proposed by
Nagasaka [8] who divided each frame into 16 blocks and
computed the distance of dissimilarity between consecutive
frames f,, and f,.; as follows:

16 N—

D(ﬁ’”ﬁ?-‘rl) = Z Z|H(fn+17cvb7j)_H(ﬁ1707b7j)|

ceRGB b=1 j=0

Where ¢, b and N are respectively the luminance of color
components of the picture (red, green and blue), the number of
blocks and the number of bins of the pixel value.

H(f,.c,b,j) is the histogram value for frame f, and for the
discrete value of the intensity k. The value of & is in the range [0,
N—1], where N is the number of discrete values a pixel can have.

To detect break shots, the metric D( f,, f,+1) is compared to a
global threshold. When this metric exceeds the value of the
threshold, it indicates that a shot transition has occurred.

Table 2
Results of cut detection for different color spaces

Along the experiments, we have tried to reduce complexity
and speed up the algorithm while preserving the same accuracy.
To do so, we have performed the local histogram approach on a
set of video sequences, in different color spaces, different types
of quantization and different formats of sub-sampling.

3.2. Video corpus

The test set of video sequences consisted of various sources,
partially digitized from different TV channels as MPEGT1 of the
size 352 %288 and partially copied from the CDs as MPEG1 of
the size of 640x480 and 352x288, and downloaded from
internet as AVI of the size 0of 216 % 192 and 160 x 120. It includes
sequences from “le Roi Scorpion” film, “Pepsi” TV commercial,
“Mulan of Walt Disney” cartoons, “Arabia” TV news, “E=M6”
documentary, “Rotana” clip and “Soccer” match.

The content of this video database is listed in Table 1 which
presents the duration, the frame size and the number of cuts and
dissolves.

This set of video sequences contains a variety of transition
effects, such as abrupt and gradual transitions. Moreover, it
involves special effects that lead to false and missed detections
(appearance of text in frames, illuminations, rapid object motion,
zooming, panning etc.).

3.3. Color spaces evaluation

A color space is defined as a model for representing color
in terms of intensity values [22]. Typically, a color space
defines a one-to-four dimensional space. A color component, or
a color channel, is one of the dimensions. A color dimensional
space (i.e. one dimension per pixel) represents the gray scale
space.

For the experiments, RGB, YC,,C; and gray scale spaces have
been used. To reduce the sensitivity to flash and illumination

Table 4
Results of cut detection for different quantization

Video RGB (%) YC,C; (%) CpC; (%) Gray (%) Video Gray U4 (%) Gray U8 (%) Gray Ln8 (%)
Soccer 100 84 57 100 Soccer 100 100 80
Clip 100 100 92 100 Clip 100 100 100
Doc. 63 88 71 86 Doc. 86 86 86
Movie 71 59 50 96 Movie 96 96 85
Com. 71 77 84 88 Com. 88 88 87
News 18 36 40 25 News 25 19 35
Cartoons 56 41 38 18 Cartoons 18 53 60
Average 68 69 62 73 Average 73 77 76
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effects, we have also used C,C, without the luminance
component Y.

The metric which we defined in RGB space, was determined
also in YC,C,, C,C, and gray levels color spaces.

A color in RGB space is converted to YC,,C, color space by
using the following equations:

Y = 0,299R + 0,587G + 0, 11B
Cy = (B-Y)/1,772 40,5
C: = (R-Y)/1,402 40,5

The gray scale can be represented only with ¥ component.

The results of cut detection obtained by performing local
histogram across the above color spaces are shown in Table 2.

For the dissolve detection, results are shown in Table 3.

In Table 2, results show that cuts are reliably detected except
for news and cartoons video. In the case of news, the performance
was not satisfactory because of special effects presence during a
topic change. For cartoons, large object motion, rapid object
motion, zooming, panning, rapid lighting changes are the
principal causes of the great number of false detections.

In general, for a typical video, histogram-based algorithms
can identify over 90% of the real shot transitions [6]. However,
for RGB color space experiments have shown that this
technique is sensitive to illuminations. The use of YC,C, and
CyC:; color spaces has reduced false detection caused by rapid
light changes (e.g. better performance for commercial
sequence), however they introduced missed detections when
consecutive frames of different shots have similar chrominance.

Finally, performing the local histogram method in the gray
levels space has presented a better quality of detection
comparing to the other color spaces. Though, illumination
changes have given several false detections.

Results in Table 3 describe the performance of the local
histogram algorithm for gradual transition (dissolve). They
show that this technique gives poor quality of detection
especially when slow transition occurs. As a consequence, the
approach of local histogram is not a suitable technique for
gradual transition detection.

3.4. Quantization evaluation

In this section, we have tested the quantization effect on cut
detection. Thus, we have firstly performed uniform quantization
into 8 and 4 levels (bins). After, logarithmic quantization has
been used.

Table 5

Results of cut detection with sub-sampled frames

Video Gr4:1 (%) Gr42 (%) YGC,.C, 4:1:1 (%) YC,C;4:2:0 (%)
Soccer 100 100 95 95
Clip 100 100 100 100
Doc. 86 86 57 57
Movie 96 96 82 84
Com. 88 38 86 86
News 23 15 15 12
Cartoons 10 10 23 27
Average 72 71 65 66

For uniform quantization into 4 levels, we define 4 ranges of
discrete values. These ranges are represented by one centre
value for each one.

0—63 First range 0)
64— 127 Second range (1)
128—191 Third range 2)
192 —255 Fourth range 3)

The same principle for quantization into 8 bins has been
applied.

For the logarithmic quantization we have used the European
“A-law”:

F(x) =

Xmax 1 —‘rlI]A

The main idea of this non-uniform quantization is to make
compression of amplitude followed by a uniform quantization.
This technique was proposed in signal treatments to improve
SNR especially when handling low amplitude signals. As a
result, we obtained a new range of discrete values as follows:

0—1 First range (0)
2—4 Second range (1)
5—38 Third range 2)
9—16 Fourth range 3)
17—33 Fifth range 4)
34—65 Sixth range )
66— 131 Seventh range (6)
1325255 Eighth range (7)

Table 4 shows the results of cut detection with different types
of quantization.

(a) Missed detection

(b) Illumination effects

(c) Object motion

Fig. 3. Examples of missed detection and false alarms.
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Table 6

Computational requirements for various methods

Method Number of operations
Pixel pair difference oP

Red histogram difference P+2N

X red histogram difference P+7N

Edge change fraction 26P

Local histogram (RGB) 3P+6Nb
Local histogram (YC,C,) 3P+6Nb
Local histogram (C,C;) 2P+4Nb
Local histogram (gray levels) P+2Nb

We denote “b” the number of blocks, “N” the number of levels and “P” the
number of pixels. In practice we have chosen h=16 and N=4.

The use of logarithmic quantization has reduced missed
detections caused by similarity between different frames.
However the sensitivity of this method has led to several false
alarms. Table 4 shows that the average of cut detection is almost
identical for each type of quantization. Examples of false alarms
and missed detected cuts are given in Fig. 3.

3.5. Sub-sampling evaluation

In this section we have worked into gray levels and YC,C;
spaces with sub-sampled frames 4:1:1 and 4:2:0. Table 5
summarizes the obtained results which are slightly less effective.

3.6. Computation time estimation

According to the assumption of Dailianas and Lefévre [3,6],
we present in Table 6 the computational requirements for the main
known algorithms and local histogram across 4 color spaces.

4. Hardware implementation
4.1. Introduction

If some processing can be executed in differed time as in the
field of the data analysis, others require data processing in real-time.
In this case, it is a question of respecting the blanking time
constraint (time between two consecutive frames). In fact, image
difference must be computed before the coming of the next image.
Since the use of software implementation is not suitable for our

R o s e
Framei |
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" | ] Threshold
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Fig. 4. Cut detection principle.
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application due to its sequential treatments, an FPGA-based
solution has been chosen.

Recently the use of the FPGA-based platform is becoming
very popular and attractive, because FPGA offers a compro-
mise between ASIC (Application Specific Integrated Circuit)
hardware and general purpose processors. ASICs offer high
performance, but take longer to design and lack program-
mability and adequate flexibility. Once deployed, systems built
using ASICs suffer long time-to-market and high costs for even
minor changes.

Thus, compared with ASIC and software implementation,
FPGA has lower costs, respectively higher speeds and especially
more flexibility because it can instantaneously be configured.

Our previous work [23,24] consists in studying simultaneously
algorithmic and architectural aspects in order to optimize
hardware implementation and reduce the time of the design.
Thus, the main objective is to find the best adequacy between
algorithm and architecture while taking into account real-time
constraints and minimization of logic resources (Table 6).

The hardware development system is based on the XSV800
board. The core of the board is a Virtex XCV800 FPGA with 800 k
gates, 9408 slices, 18816 Flip Flops, 18816 LUTs, 320 IOBs,
4 GClks and 28 configurable internal Block RAM of 4 kb.

The architecture is described with the VHDL language in
Register Level Transfer (RTL) with the Integrated Software
Environment (ISE) of Xilinx.

352 92

I 3
v
] &
v

288 Visible pixels

28

Fig. 6. Entire image video.
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4.2. Temporal constraints

For analog TV, there are two important synchronization
signals:

— The horizontal synchronization which gives periodically a
negative pulse during the dead time between two consecutive
lines belonging to the same image.

— The vertical synchronization which generates a negative
pulse between two consecutive images. This pulse width is
equal to the inter-image time.

In digital TV, the streaming video at 25 Mb/s is composed by
DCT based compression video, two or four tracks of audio, a time
code (TC) track and CRC redundancy check track. Audio, TC

L. Boussaid et al. / Computer Standards & Interfaces 29 (2007) 335-342

and CRC tracks represent the inter-image time presented for the
analog TV.

For digital video, we digitalize only 720 pixels instead of 856
per line. The rest of the entire line is replaced by sound, TC and
CRC. For audio we have to choose between:

— 2 tracks at 48 kHz 16 bits=1536 kb/s
— 4 tracks at 32 kHz 12 bits=1536 kb/s

In digital, the inter-frame time is about 1.9 ms. This dead time
must be sufficient to compute our approach in real-time condition.

In experiments, we have chosen a CIF format (a quarter of
screen) which has the size of 352 x288 pixels. Since block
histogram (local histogram) consists in dividing image into
16 blocks, so a block has a size of 88 x 72 pixels.

v

v

BRAM1 No

Yes

BRAM# =0

! 1
i Computing Frame n+1 !
! 1

Visible Pixels

Pixcnt < Pixent + 1

|
r = Pixcnt div (h *w *4)
¢ < Pixcnt mod (w *4)
¢ cdivw

|

BRAMO[r & ¢ & Data] <~ BRAMO[r & ¢ & Data] + 1

BRAM# <0 |
[

No

Yes

| BRAM# < |
|

y

i=0

63
DM = Z|BRAMO(£)— BRAM1(i)|

Y

Cut detection < 0
[

Cut detection < 1
I

Fig. 7. Flowchart for dissimilarity metric processing.
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4.3. Implementation schemes

The process of cut detection based on local histogram is
described in Fig. 4.
It includes three important steps:

— histograms calculation;
— sum of histograms differences of consecutive frames and;
— comparison to a predetermined threshold value.

Following the experiments presented above, we have chosen
to work in gray levels space and uniform quantization at 4
levels.

The image size used for test and simulation is of
352 %288 pixels.

Let W, H, w and h represent respectively the width and
height of a frame, and the width and height of one block in the
frame.

W=wx4 and H=h=4.

We denote “r” a row composed by 4 blocks, and “c” a
column which is also composed by 4 blocks. A block number is
determined as shown in Fig. 5 by the expression:

Block# = 4r + ¢
With 7, ¢ €[0--3]
Block5 =4(r) +c=4(1)+1=>5

To compute correctly the dissimilarity metric of consecutive
frames, we must take into account the non-visible pixels when
Hsync and Vsync (synchronization signals) send negative pulses.
Fig. 6 shows the regions of visible and non-visible pixels.

The flowchart described in Fig. 7, presents the whole
concept of the design.

The variables used in the design are defined as follows:

BRAM# Is Boolean that can take 0 or 1 and represents the
memory number in which frame will be saved.

BRAMO and BRAM1 Are two block RAM of 4 kb. In fact,
XCV800 FPGA provides 28 internal RAM memories

Reset
V clock
Gray 2
Cut cD
Hsync Detector f——
— Vsync Core
Clockgen r
c

Fig. 8. Synoptic of the design in the RTL level.

Table 7

Table of results

Slices Flip Flops LUTs 10Bs Min. period

152 (1%) 112 (0.6%) 268 (1%) 4 (1%) 8.488 ns
of 4 kb called Block RAM. Each one of these
memories can be configured in width and depth
according to the needs of the application. In our case,
only two BRAM s configured as 256 words of 16 bits
have been used. Though only 64 words are useful to
save 16 histograms of dimension 4 (quantization into 4
levels).

Pixelent Represents the visible pixel counter.

r Gives the row number in a frame.

c Gives the column number in a frame.

BRAMO[r & ¢ & data] We concatenate in this case (r), (¢) and
(data) to firstly locate the memory cells reserved for a
block and after the specific cell according to the data
value [0--3].

Vsync and Hsync Represent the vertical and horizontal
synchronization.

Threshold Is predetermined value deduced in experiments.

DM Represents the dissimilarity metric which should be
compared to threshold in order to make decision.

In the RTL level, design has been divided into parts as
described in Fig. 8.

4.4. Implementation results

After validation by simulation using Modelsim, compilation
and synthesis by Xilinx Integrated Software Environment (ISE)
gave the results presented in Table 7. We notice that the
occupied area of the design is almost 1% of total resources plus
two internal blockRAMs of 4 kb. The minimum period is
8.48 ns.

5. Conclusion

In this study, we have tested and evaluated the local
histogram approach across several types of video, in diffe-
rent color spaces, different types of quantization and sub-
sampling.

The experiments have shown that the gray space at four
levels has presented reliable results and relatively low
computation time.

On the other hand, the hardware implementation on a Virtex
FPGA-based board has used almost 1% of logical resources
plus two Block RAMs. By using a clock system of 50 MHz, the
computation time obtained is 0.3 ms which less than the inter-
frame dead time estimated at 1.91 ms.

Our future work consists in developing a video analysis
and content description template for real-time applica-
tions. This template is based on extraction of audio and
video features.
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