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Abstract

This paper presents a generalization of the Canny–Deriche $lter for ramp edge detection with optimization criteria used by
Canny (signal-to-noise ratio, localization, and suppression of false responses). Using techniques similar to those developed
by Deriche, we derive a $lter which maximizes the product of the $rst two criteria under the constraint of the last one. The
result is an in$nite length impulse response $lter which leads to a stable third-order recursive implementation. Its performance
shows an increase of the signal-to-noise ratio in the case of blurred and noisy images, compared to the results obtained from
Deriche’s $lter. ? 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Among the image processing stages involved in an
arti$cial vision system, edge detection is one of the
most useful and basic. The edges or contours are char-
acterized by sharp and wide variations of luminance
in the image. The detection and localization of these
variations in luminance have been the subjects of nu-
merous publications. Gradient estimations (Roberts’
gradient for instance [13]) are the classical methods
which give satisfactory results in the case of slightly
noisy images. In the case of heavily noised images, re-
searchers have developed di>erent optimal operators
by associating low-pass $ltering with the gradient de-
tector [10,15,8]. Brie@y we will review some recent
developments in this $eld.
In 1986, Shen and Castan [16] proposed a $lter

with exponential impulse response in order to detect
step edges using a second derivative $lter. In order
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to implement this $lter, they proposed a design based
on a recursive form (a $rst-order $lter). The results
obtained showed a good resistance to noise and a good
localization of contours, but the optimality was not
clearly de$ned.
Canny [3] was the $rst to give analytic expressions

for the criteria that have to be optimized in edge de-
tection. He de$ned three criteria: signal-to-noise ratio
(SNR) after detection, localization (L) of the detected
edge with respect to the theoretical one, and mean dis-
tance between multiple responses of the detector and
the real edge multiple response criterion (MRC) [3].
The application of these three criteria to an ideal

edge (step edge) has led to the development of an
optimal $lter de$ned by its $nite impulse response.
An unlimited band (from the spatial point of view)

extension of Canny’s $lter was proposed by Deriche
in 1987 [5,6]. In order to avoid truncating the $lter,
Deriche used a second-order recursive implementa-
tion. The results obtained showed a great improvement
compared to those obtained by Canny, particularly for
the reduction of multiple responses.

0165-1684/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
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The authors quoted above based their studies on the
detection of ideal edges which are hardly consistent
with those encountered in real images. This led Petrou
and Kittler [11] to propose in 1991 a more general op-
timum $lter for smooth edges. Their optimization is
oriented by using the criteria de$ned by Canny. The
result is given in the form of a table of convolution
masks based on the truncation of the $lter impulse re-
sponse. The results presented are thus largely incom-
plete with respect to obtaining di>erent slopes of a
particular edge. Furthermore, it appears that the com-
parison of their $lter with that of Deriche’s is based
on a bad choice of parameters for the latter.
We propose to resume again the study described

above by using the same edge model. This edge model
depends on a parameter s, which describes the blur
(the shape of the edge) in the image. This blur may
result from the real shape of the objects or from their
movement during the shot; it can also be due to the
lens’s limited $eld depth, or to the fact that the camera
is out of focus. A non-punctual light source is also a
common source of blurred object contours.
We believe that the method used by Petrou and Kit-

tler [11] is not the best. We propose here a third-order
recursive $lter which improves, in terms of sensitivity,
the detection (in the sense of Canny’s criteria) with
respect to a Deriche $lter (optimized correctly for the
chosen edge) and with Petrou and Kittler’s $lter.

Fig. 1. The edge model function (line curve s = 0:5 point curve s = 5).

2. Optimization criteria of the edge detector

2.1. Real edge

The acquisition of a real world image by an optical
system implies the presence of a certain blur, gener-
ally modeled by: J1(x)=x (where J represents a Bessel
function). Here, we use a Gaussian $lter as an approx-
imation of the optical blurring. However, as noted pre-
viously, the blur in real edges can have other causes
than optical ones. This is why this model can only
represent aspect of real cases in an approximate way,
and any other model which approximates reality in the
same way can be used.
Essentially, for the simpli$cation of calculations,

we have chosen the following edge function [17]:

C(x) =




1− e−sx

2
for x¿ 0;

with s¿ 0;

esx

2
for x¡ 0:

(1)

In Fig. 1, we show the in@uence of the parameter s on
the edge model (the line curve is obtained for s= 0:5
and the point curve for s= 5).
The choice of our model is illustrated by the ball

(picture) shown in Fig. 2 associated with the pro$le
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Fig. 2. Real image, which represents an image ball captured with
a CCD camera.

Fig. 3. A cross-section of the ball image shows its edge pro$le
(line curve: cross-section point curve: exponential edge model for
s = 0:4).

given in Fig. 3 (the line curve is the real pro$le, and the
point curve is the exponential edge function obtained
with s= 0:4).

2.2. Optimization criteria

We are looking for a real one-dimensional linear
$lter with which to start. Since we are interested in

the local maxima at the output of this $lter, it must
satisfy the following conditions [19]:
Its impulse response f(x) must be odd:

• f(x) =−f(−x) then f(0) = 0.
• Its impulse responsemust vanish at±∞, and prefer-
ably it must have only a single zero.

• The maximum response to a step edge must be
unique: f(0) = 0, f′(0) = 0, and f′(∞) = 0.

These optimization criteria are the same as those given
by Canny [3] and by Petrou and Kittler [11].

2.2.1. For SNR
The input signal is the edge de$ned in Eq. (1).

The noise is assumed to be additive, Gaussian, and
zero mean (this hypothesis is correct for usual noisy
images, but it is evidently false in the case of textured
images).
The SNR at x = 0 is therefore given by (2):

SNR =
| ∫ +∞−∞ C(−x)f(x) dx|
n0(
∫ +∞
−∞ f2(x) dx)1=2

= K1�; (2)

where n20 is the power spectrum density of the addi-
tive white noise, K1 = 1=

√
2n0, and � is the variable

part which must be maximized during the optimiza-
tion process.

2.2.2. For localization
This criterion must characterize the average di>er-

ence between the position of the detected edge in the
presence of noise and its exact position. In order to
have an expression to be maximized, Canny [3] con-
sidered the localization as being the inverse of the
variance of the detected edge position. The parameter
L de$ned by Eq. (3) must be as large as possible:

L′ =
| ∫ +∞−∞ C′(−x)f′(x) dx|
n0(
∫ +∞
−∞ f′2(x) dx)1=2

= K1L: (3)

2.2.3. For the multiple response criterion
In the presence of noise, the detected signal can

show several maxima. These false responses must be
as distant as possible from the main one. The MRC,
de$ned by expression (4), is proportional to the aver-
age distance between maxima of the $lter’s response
to Gaussian white noise. For x¡ 0, the MRC must
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therefore be maximized [3,5]

MRC =

(
| ∫ 0−∞ |f′2(x) dx|∫ 0

−∞ f′′2(x) dx

)1=2
: (4)

The optimum $lter is obtained by maximizing each of
these three criteria equations (2)–(4). For calculation
simpli$cation reasons, Canny proposed the maximiza-
tion of the product � · L under the MRC constraint
which is e>ected to an arbitrary constant.
Note that in 1990 Tagare and De Figueiredo [18]

proposed a modi$cation of Canny’s localization crite-
rion. Their criterion is based on a statistical study of
the number of zero crossings of the $rst derivative of
the $lter’s response to noisy input. The form of the
criterion which they proposed concerned only ideal
edges, and their method was thus not general. On the
other hand, Sarkar and Boyer in 1991 [14] proposed
a modi$cation of the MRC by introducing the notion
of an equivalent band (in the spatial domain). Using
variational calculus, they designed a $lter (a table of
values representing the parameters of the $lter) which
is diMcult to implement. So they proposed (without
any theoretical justi$cation) a recursive implementa-
tion of a third-order $lter.
The MRC criterion proposed by Sarkar and Boyer

is not in agreement with that proposed by Canny. To
see that, it suMces to look at Figs. 3 and 4 [14, p.
1160] and notice that their MRC increases when the
$lter becomes narrow in the spatial domain! The MRC
would logically have to decrease because the $lter
becomes more and more high-pass (in frequency); as
a result, it passes more noise and reduces the maximal
average distance (therefore the MRC) that separates
two adjacent zero crossings. Sarkar and Boyer’s MRC
evolves in a contradictory manner as compared to the
evolution of Canny ’s.
In the Rice (Canny) [12] proposal, the wider the

band of the $lter, the more the distance xmax(f) de-
creases as opposed to what occurs in the Sarkar and
Boyer’s criterion.

3. Filter impulse response

The optimization concerns only the variable parts
of the three criteria. We choose to maximize the

product � · L under the MRC constraint. Thus, we
transform the optimization problem into a problem un-
der constraints which use variational calculus [4] re-
quiring the calculation of a functional in the admis-
sible functions domain. Thus, one of the integrals of
the expression � · L should be optimized while leav-
ing the others as undetermined constants. Finally, we
choose to minimize one of the denominator integrals
of the � · L with the constraints C1–C4 (for x6 0):∫ 0

−∞
f2(x) dx

C1 =
∫ 0

−∞
f(x)(1− esx) dx; C2 =

∫ 0

−∞
f(x)esx dx;

C3 =
∫ 0

−∞
f′′2(x) dx; C4 =

∫ 0

−∞
f′2(x) dx: (5)

The Ci (i=1; : : : ; 4) are arbitrary constants. By using
Lagrange multipliers [4], the composite function is
formed (6):

Z(x; f; f′; f′′) =f2(x) + �1f′2(x) + �2f′′2(x)

+�3f(x)esx + �4f(x)(1− esx): (6)

This function must satisfy the Euler equation (given
in Appendix A) which leads to a di>erential equation
with f(x) as a solution. The general form obtained for
f(x) is given here (the details of the calculations are
given in Appendix A):

2f − 2�1f′′ + 2�2f′′′′ = (�4 − �3)esx − �4: (7)

To solve this di>erential equation, one seeks con-
ditions of existence of the general equation without
second member:

2f − 2�1f′′ + 2�2f′′′′ = 0

f is replaced by a particular solution, which leads to
the next characteristic equation:

1− �1�2 + �2�4 = 0 with �=±� ± i!: (8)

This leads to expressions of �1 and �2

�1 =
2(�2 − !2)

4�2!2 + 4(�2 − !2)2
;

�2 =
1

4�2!2 + 4(�2 − !2)2
:

(9)
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The $nal solution leads to the function f(x) hereafter.
By taking into account the boundary conditions, the
number of constants is reduced:

f(x) = a1e�x sin(!x) + a2e�x cos(!x)− a2esx

with x6 0 and ai = constant; (10)

a2 =
1
3�3

1 + s2(s2�2 − �1)
: (11)

4. Parameters estimation and limit conditions

The search for the best $lter leads to the determina-
tion of the parameter values which maximize the three
initial criteria. According to Canny [3], this consists
of maximizing the product � · L under the MRC con-
straint. For this, we replace the function f(x) by its
value and calculate the product � ·L. Then, we would
like to analyze the di>erent functions obtained, start-
ing with the three optimization criteria. Prior to all
these steps, we simplify the problem by limiting the
variation range and by setting the limit conditions.
Eqs. (9) and (11) allowed us to decrease the num-

ber of parameters on which f depends; f does not
depend on more than $ve parameters (a1; !; �; s and
�3). Still, optimal solution of f seems diMcult to
reach because it depends on $ve variables. In order to
$nd the function f, we are going to proceed to other
simpli$cations.
First of all, this $lter is conceived to analyze im-

ages. The standard system of acquisition provides im-
ages whose sizes vary between 512 and 1024 pixels. In
numerical approaches, the pixel represents the unit of
length. One of the conditions for good $lter e>ective-
ness is a unique maximum for step response, which
is equivalent to the condition of unique zero crossing
in the impulse response (for $nite x). This zero cross-
ing must correspond to x= 0. If we take into account
the image size, ! must be very small (!¡ 1=1024)
in order to respect the above condition.
By taking into account the previous consideration,

and for $nite x, we deduce that !x�1, which leads
to the next solution of f:

f(x) = a1e�x!x + a2e�x − a2esx for x6 0; (12)

where sin(!x) ∼= !x and cos(!x) ∼= 1.

The value a1 is a non-null constant, and a new func-
tion de$ned by f=!a1 is also an optimal function in
the senses of the three criteria. All these hypotheses
lead to this $nal function:

f(x) = (x + A)e�x − Aesx: (13)

As !	1 in order to avoid oscillations then

�1 ≈ 1
2�2

; �2 ≈ 1
4�4

;

with

A=
4
3

k�4

!(4�4 + s4 − 2s2�2)
; k =

�3
a1

:

For an ideal edge with a parameter s equal to in$nity,
the function is equivalent to

f(x) = xe�x: (14)

This function is also the $rst-order approximation of
the Deriche $lter [6].

5. Numerical approach to the in uence of
parameters � and k on optimization criteria

After simpli$cation f depend only on three vari-
ables: �; k; and s. In order to take into account the
previous remark, the value 10−4 is arbitrarily chosen
for ! in the following sections.
Parameter s is a characteristic of each given image,

and in certain cases it is even object dependent. Indeed,
as noted above, the reasons for edge blurring can be
multiple: optical, linked to the shape of the objects
being viewed, related to the same movements, or even
due to illumination characteristic.
Therefore the choice of the value for s has been

made either in an “ad hoc” manner or in accordance
with some modelization of the scene. Some trivial ex-
periments have been done in order to avoid this “a
priori” and the multi-resolution approach seems to be
interesting [20,7].
In this paper, which is concerned with optimal edge

detection, we assume that s is known and we try to
study how to chose � and k for optimal edge detection.
Given the complex form of the product � · L, it is

impossible to obtain an analytic solution. So we use
here a numerical approach to solve this problem. For
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Fig. 4. E>ect of k and � on the product SNR by L.

Fig. 5. E>ect of k and � on the SNR.

several values of s=1, we give a numerical represen-
tation of �·L in Fig. 4. The $rst analysis shows that the
product increases with decreasing � and increasing k.
The better we know this characteristic, the easier it is
to detect the edges in the images. Figs. 5 and 6 show
the e>ect of � and k on SNR and L (localization).
In Figs. 5 and 6 we observe that the localization

criterion (L) decreases with decreasing �. At the same

Fig. 6. E>ect of k and � on (L).

time, we observe the opposite phenomenon according
to the SNR criterion, so the best choice of � depends
on the type of image.
The best advantage of this $lter resides in the fact

that it takes into account the e>ect of the physical de-
fects of the blurred images before detecting the edges.
In this way, we separate the trade-o> problems of the
SNR and localization.
We can illustrate the e>ect of the parameter s in-

troduced here in our $lter function with the choice
of two di>erent values. For example, a blurred image
is characterized by: s = 1; � = 0:06, and k = −20;
the product of the SNR by the localization is equal
to 5.26. Consequently, for an ideal edge model (De-
riche’s approach), applied to detect a blurred image
is equal to 3.56, corresponding to a decrease of 32%.
For common images, the s is $nite, so using our edge
model leads to increasing the SNR criterion which is
predominant compared to the localization one.
Fig. 7 represents the product�·L for a $xed k=−20.

The curve in full line is obtained with the function
$lters developed. The dotted line corresponds to the
Deriche $lter. Compared to the Deriche $lter whose
� · L is limited to 4, the general $lter one obtains a
better product.
Fig. 8 deals with the optimal function with real

s = 0:5, � = 0:15, and k = −1 (continuous line), and
its approximation to ideal edge (dotted line).
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Fig. 7. In@uence of a on the product RSB×L for a $xed k=−10
(line curve general $lter, point curve represents Deriche’ ones).

Fig. 8. The $lter function (line curve general $lter with s=1 and
k =−1, point curve represents Deriche’ ones k = 0).

6. Implementation in recursive form

Given the $lter function f(x) obtained by Eq. (13),
an in$nite impulse response (IIR) $lter is obtained

by sampling f(x) (see Fig. 8) with a unity sampling
period. Its impulse response is given by f(n) with n
being an integer.
The normalization can be e>ected by multiplying

by a constant G (see Appendix B), such that
+∞∑
−∞

Gf(n)C(−n) = 1: (15)

Taking the z transform (TZ) of f(n) split in causal
and anti-causal part yields

f−(n) =−(n+ A)e�n + Aesn with n6 0; (16)

f+(n) = (−n+ A)e−�n − Ae−sn with n¿ 0: (17)

Only the TZ of the causal part is calculated; that of
the anti-causal part is deduced

TZ(f+) =
+∞∑
−∞

f+(n)z−n = TZ+;

TZ(f−) = TZ− =−TZ+
(
1
z

)
;

TZ+ =
a1z−1 + a2z−2

1− a3z−1 + a4z−2 − a5z−3
=

Y+(z)
X (z)

;

TZ− =− a1z + a2z2

1− a3z + a4z2 − a5z3
=

Y−(z)
X (z)

;

(18)

where X (z)=TZ(x) and Y (z)=TZ(y); x and y being
the input and the output signals of the $lter (Y (z) =
Y+(z) + Y−(z)).
Finally, the following stable third-order recursive

$lter is obtained:

y+(i) = a1x(i − 1) + a2x(i − 2)− a3y+(i − 1)

− a4y+(i − 2)− a5y+(i − 3);

y−(i) = a1x(i + 1)− a2x(i + 2)− a3y−(i + 1)

− a4y−(i + 2)− a5y−(i + 3); (19)

where ai are given in Appendix B.

7. 2-D Extension

The one-dimensional $lter f(x), presented in Sec-
tion 3, allows us to obtain the directional derivative in
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Fig. 9. The smoothing function (line curve general $lter with s=1
and k =−1, point curve represents Deriche’ ones k = 0).

the x-axis direction. Each point on an edge within a
2-D image is de$ned by its gray level, its position, and
the orientation of the gradient in its neighborhood. Be-
cause all orientations are possible within the image, it
is preferable for the operator to be symmetrical (circu-
larity symmetric) in all directions. Torre and Poggio
[19] showed the necessity of using a regularizing $l-
ter before taking a derivative (see also [9]). Knowing
that it is diMcult to extend isotropically an odd $lter
to 2-D (whereas an even $lter can be extended by a
simple rotation), we prefer to $nd an even regulariza-
tion $lter starting with our odd $lter f(x). For this,
we use the convolution property

f(x) ∗ I(x) =
d(h(x) ∗ I(x))

dx
=
dh(x)
dx

∗ I(x)

with

dh(x)
dx

= f(x) and I(x)the image:

Calculating the integral of the above expression, one
can obtain the following regularization $lter (Fig. 9):

h(x) =− (s�x − s+ s�A)e�x − (A�2)esx

s�2
: (20)

The recursive implementation of the regularization
$lter leads to the same causal=anti-causal decom-
position.
We want to maintain the separability of our function

for simplicity and calculation load. Therefore, know-
ing that the direction of an edge as well as the am-
plitude of the gradient can be calculated in two ar-
bitrary perpendicular directions, the derivative along
column (c) is determined by a smoothing operation
along row (r) and vice versa. From the separability of
the function, the smoothing function in 2-D is deduced
from:

L(m; n) = h(m) · h(n):
The derivative in c and r directions gives the following
2-D, separable $lters:

Lc(m; n) = f(m) · h(n);

Lr(m; n) = h(m) · f(n)
m and n being the index for column and row, respec-
tively.

8. Experiments and results

All images processed here are gray level images
with a 256 gray scale and in a 256 × 256 pixels for-
mat. Fig. 10 represents a real world image (French
research group GDR ISIS) with an additive Gaussian
noise of standard deviation "=50. This additive noise
has been created with a white-noise Gaussian gen-
erator, and this noise is independent of the original
image.
Fig. 11 represents the edges detected using the ideal

camera with s → ∞ and � = 0:1 and k = −1, by
the $lter f(x) (which corresponds to Deriche’s $lter),
whereas Fig. 12 represents those obtained using a real
camera with s = 0:5. Note that Fig. 12 is less noisy
than Fig. 11.
The second result represents a ball picture which

has been chosen for the illustration of the blurred scene
(Fig. 2). This image has been disturbed by an additive
Gaussian noise of standard deviation "=50 (Fig. 13).
Figs. 14 and 15 show image results obtained for two
values of s (s → ∞; s=0:5) and �=0:1 and k =−1.
We can see that the best detection is obtained when s
represents the real value.
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Fig. 10. Image with additive Gaussian noise (" = 50).

Fig. 11. Edges detected using optimal $lter with �=0:8 and s=∞.

We also present in Table 1 some experimental val-
ues of implemented coeMcients ai according to the
choice of the s and � parameters used for the extrac-
tion of contours.

Fig. 12. Edges detected using optimal $lter with �=0:8 and s=0:5.

Fig. 13. Ball picture with additive Gaussian noise (" = 50).

9. Conclusion

In this paper we have presented an optimal operator
for the detection of exponential shape edges. This
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Fig. 14. Edges detected using optimal $lter with �=0:8 and s=∞.

Table 1
Experimental values for implementing f $lter (mathematical expressions of these coeMcients are presented in Appendix B)

� k s G a1 a2 a3 a4 a5

0.1 − 1 0.5 0.0018 − 7.7743 6.7646 − 2.4162 1.9164 − 0.4966
0.1 − 1 10 0.0050 − 0.9050 0.0002 − 1.8097 0.8188 − 0.0000
0.5 − 1 0.5 0.1276 − 0.6065 0.3679 − 1.8196 1.1036 − 0.2231
0.5 − 1 10 0.1236 − 0.6573 0.0308 − 1.2131 0.3679 − 0.0000
0.8 − 1 0.5 − 1:74× 10−4 0:621× 103 − 0:279× 103 − 1.5052 0.7470 − 0.1225
0.8 − 1 10 0.2587 − 0.6978 0.1117 − 0.8987 0.2019 − 0.0000

exponential function is an approximation model
of real edges in most images obtained with CCD
cameras.
With this aim, we followed the way paved by Canny

and have therefore calculated three criteria: localiza-
tion, signal-to-noise ratio, and multiple responses. The
optimization of these criteria led us to a third-order
recursive $lter. The performances of this $lter are de-
termined for a given s, the best choice of the two pa-
rameters � (� determines the width of the $lter) and
k. These performances show an increase of the prod-
uct of the signal-to-noise ratio by the localization of
about 32% in the case of blurred and noisy images in
comparison with a $lter designed with an ideal edge
model (model proposed by Canny and developed by
Deriche).

Fig. 15. Edges detected using optimal $lter with �=0:8 and s=0:5.

The function $lter we present in this paper
(third-order $lter) is a global $lter. So it contains De-
riche’s second-order $lter and Shen’s $rst-order $lter.
We have also found that for a given scene char-

acterized by a parameter s, we can improve the edge
detection with an optimal choice of the parameter
� and k. So in the case of noisy and blurred im-
ages, the optimized $lter allows us to increase the
best signal-to-noise ratio and also the best localiza-
tion of the edges. These performances are theoreti-
cally estimated by Cane’s criteria and experimentally
measured.
The recursive implementation of this $lter allows

us to avoid truncating the $lter impulse response.
This leads to an easy use of the optimized $lter for
multi-scale applications [1,2,7].
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Appendix A. Resolution of Euler’s equation

Zf − d(Zf′)
dx

+
d2(Zf′′)
dx2

= 0

with

Zf =
dZ
df

= 2f(x) + �3esx + �4(1− esx);

Zf′ =
dZ
df′ = 2�1f

′(x)⇒ −d(Zf′)
dx

=−2�1f′′Zf′′

= 2�2f′′(x)⇒ d2(Zf′′)
dx2

= 2�2f′′′′:

When we change these values in Euler’s equation, we
obtain

2f − 2�1f′′ + 2�2f′′′′ = (�4 − �3)esx − �4:

The solution of this di>erential equation is obtained
in two steps:

A.1. Solution without second member

2f − 2�1f′′ + 2�2f′′′′ = 0:

The general equation without second member admits
as solution an exponential function

f(x) = be�x:

We substitute this solution in the di>erential equation
above; which leads to the characteristic equation here-
after:

1− �1�2 + �2�4 = 0:

The resolution of this equation leads to the $nal solu-
tion hereafter

�2 =
�1
2�2

±
√

�21 − 4�2
2�2

:

We de$ne

�=±� ± i!:

Which leads to two equations

�2 − !2 =
�1
2�2

4�2!2 =
�21 − 4�2
4�22

:

From this last relationship, we deduce �1 and �2 which
depend on � and !

�1 =
2(�2 − !2)

4�2!2 + 4(�2 − !2)2
;

�2 =
1

4�2!2 + 4(�2 − !2)2
:

As !�1

�1 ≈ 1
2�2

;

�2 ≈ 1
4�4

:

The general solution of the di>erential equation with-
out the second member is similar to that obtained by
Canny [3].

f0(x) = a1e�x sin!x + a2e�x cos!�+ a3e−�x sin!x

+ a4e−�x cos!x:

A.2. General solution

The particular solution is

fp(x) =
(�4 − �3)esx

2[1 + s2(s2�2 − �1)]
− �4
2

:

The general solution is

f(x) = f0(x) + fp(x):

When one applies the limit conditions quoted in part 2:

f(−∞) = 0⇒ a3 = a4 = �4 = 0;

so

f(x) = a1e�x sin!x + a2 e�x cos!x

− �3esx

2[1 + s2(s2�2 − �1)]
; x6 0;

f(0) = 0⇒ a2 =
�3

2[1 + s2(s2�2 − �1)]
:

Then

f(x) = a1e�x sin!x + a2e�x cos!x − a2esx; x¡ 0:
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Appendix B. Coe/cients of the recursive
implementation of the derivative 0lter

Numerical expression of the $lter function

f(n) = (n+ A)e�n − Aesn; n6 0:

With

A=
4
3

k�4

!(4�4 + s4 − 2s2�2)
:

Z transformation of f(n)

TZ+ =
a1z−1 + a2z−2

1− a3z−1 + a4z−2 − a5z−3
=

Y+(z)
X (z)

;

TZ− =− a1z + a2z2

1− a3z + a4z2 − a5z3
=

Y−(z)
X (z)

:

Expression of the constants ai

a1 =
A
e�

− A
es

− 1
e�

a2 =
A
e�es

+
1
e�es

− A
(e�)2

;

a3 =− 2
e�

− 1
es

;

a4 =
1

(e�)2
+

2
e�es

a5 =
1

(e�)2es

The constant of normalization G
1
G
=

−
(
2
−Ae2� − e(�+s) + e� + Ae� + Ae(�+s) − Aes

(2e� − 1− e(2�))(es − 1)

)
:
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