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Abstract 

We present an original method for the simulation of 
images degraded by atmospheric turbulence. The existing 
methods allow us to simulate only images that are tempo- 
rally decorrelated from each other, in the isoplanatic case, 
or in weak anisoplanatism. Here, we propose a simulation 
for the case of strong anisoplanatism. Moreover, the tempo- 
ral aspect has been studied in order to build up a sequence 
of degraded images, using principal component analysis 
(PCA). The images obtained clearly show the effects of ani- 
soplanatism and temporal evolution of turbulence. 

Mots el~s : Traitement image, Propagation atmosph6rique infra- 
rouge, Turbulence atmosph6rique, Analyse composante principale, 
S6quence image, Simulation, Variation temporelle. 

UNE MI~THODE BASI~E SUR L'ANALYSE EN 
COMPOSANTES PRINCIPALES POUR LA 
SIMULATION DE SI~QUENCES D'IMAGES 

INFRAROUGES DI~GRADI~ES PAR LA 
TURBULENCE 

R6sum6 

Une mdthode originale de simulation d'images ddgra- 
ddes par la turbulence atmosphdrique est prdsentde. Les 
mdthodes existantes ne permettent de simmer que des 
images temporellement ddcorrdldes les unes des autres, 
dans le cas de l'isoplandtisme ou du faible anisopland- 
tisme. Dans cet article, une simulation pour le cas de fort 
anisoplandtisme est proposde et une dtude sur l'aspect 
temporel du phdnombne dans le but de construire une 
sdquence d'images ddgraddes, ?t l'aide de l'analyse en 
composantes principales est faite. Les images obtenues 
montrent clairement les effets de l'anisoplandtisme et 
l'dvolution temporelle de la turbulence. 

Key words: Image processing, Infrared atmospheric propagation, 
Atmospheric turbulence, Principal component analysis, Image 
sequence, Simulation, Time variation. 
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I. INTRODUCTION 

This paper deals with the simulation of high-resolution 
images degraded by atmospheric turbulence. Atmospheric 
turbulence perturbs the optical propagation and therefore 
severely limits the observation of  objects lying far away 
from the optical system. This is the case in astronomy, or 
for ground-to-ground vision over several tens of  kilome- 
ters [1]. The real capture of  these kinds of high-resolution 
images implies the use of an expensive and advanced opti- 
cal system, hence the interest of  a simulation method allo- 
wing to produce these images under different atmospheric 
conditions. The research that has already been carried out 
in this field applies mainly to astronomical observations. It 
consists in simulating a wavefront which is at first plane, 
and is then perturbed by passing through turbulent atmos- 
pheric layers. The simulation is usually limited to the cal- 
culation of the wavefront phase [2,3]. However, 
Kouznetsov et al. [4] proposed a method for the simula- 
tion of  two linked random phenomena, such as the phase 
and amplitude of  a turbulent wavefront. All these simula- 
tions are developed for the isoplanatic case, for which the 
perturbation is the same across the whole field of  view ; 
but an algorithm modeling the anisoplanatism effects has 
been proposed by H. Beaumont [5]. 

We propose a method for the simulation of  a short- 
exposure image sequence taken at a quite high sampling 
frequency in a less common case, that of horizontal pro- 
pagation through turbulence, over a distance of  roughly 
ten kilometers. These conditions present some notewor- 
thy differences in comparison with those that are usually 
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stated. First of all, the refraction index structure constant 
C~ 2 remains almost the same along the propagation path, 
because the atmospheric layers are horizontally stratified. 
Secondly, the images very often show an obvious aniso- 
planatic character, because the field of view is wider than 
for astronomical observation. Finally, since turbulence 
fluctuates with time, the images of  a given sequence pre- 
sent more or less similarities, depending on the sampling 
frequency. Therefore, the temporal behaviour of  the 
turbulence has to be taken into account in the simulation. 

In the first part of  this paper, we explain the simulation 
method for degraded images taken at fairly wide time 
intervals, in the case of  total anisoplanatism, and which is 
based on the works cited above. In the second part, we 
show how, starting from what is known about the temporal 
evolution of  turbulence, and using principal component 
analysis (PEA), we can build up a whole sequence of 
degraded images at a fixed sampling frequency. 

I I .  T U R B U L E N C E - D E G R A D E D  I M A G E  
S I M U L A T I O N  

Atmospheric turbulence is due to the random motion 
of air masses at various temperatures, that provokes local 
fluctuations of  the air refraction index value. Figure 1 
shows the effects of  these fluctuations on a wave issued 
from a star : this wave, plane at the entrance of  the 
atmosphere, is distorded because of its passage through 
the atmosphere. Thus, a plane wave propagating through 
a turbulent medium undergoes amplitude and phase 
variations that follow known statistic laws [1]. 

F I G ,  1 .  - -  P r o p a g a t i o n  t h r o u g h  tu rbu lence  

Propagation gt travers la turbulence 

IMAGE SEQUENCE 3 2 5  

r = (x, y)T representing the point of  (x, y) coordinates in 
a plane perpendicular to the direction of  propagation of 
the wave. One of  the first simulation methods was propo- 
sed by B. L. McGlamery [2]. It consisted in generating a 
random variable as the phase Fourier transform, and then 
in multiplying it by f - l l / 6 ,  SO that the phase fluctuation 
power spectrum follows the Kolmogorov law. The pro- 
blem of this frequential filtering is that it underestimates 
low frequencies. We chose then to start from the method 
proposed by N. Roddier [3] :  the phase ~ r )  being 
decomposed on a Zernike polynomial base [6,7], a ran- 
dom draw law allows to generate the expansion coeffi- 
cients, so that the wavefront follows the commonly used 
Kolmogorov's  turbulence model, 

The atmospheric impulse response (or point-spread 
function) h is the image formed by the point-source emit- 
ring the wavefront air. It is given by the squared Fourier 
transform modulus of  the received incident wavefront 
part:  

(2) h(fl) = I~ [P(r)qS(r)]l z, 
P(r) being the pupil function, that equals 1 inside the 
optical system pupil and 0 outside, and ,~ the Fourier 
transform operator ;/3 represents the angular observation 
direction. If  we can consider that this impulse 
response is spatially invariant across the field of view 0, 
the image i of an object o is given by : 

(3) i(ot) = J h ( a -  fi')o(fl)dfl. 
0 

Actually, since the atmospheric turbulence is widely 
distributed in space, the wavefront perturbations are not 
identical for all wavefront directions. In this case, called 
anisoplanatic case, the point-spread function is not the 
same for all points of  the image [1]. In order to simulate 
anisoplanatism, we integrated the method developed by 
H. Beaumont [5] : the atmospheric impulse response, 
depending on the observation direction, can be simulated 
according to the following formula : 

(4) h(fl, fl ') = i~ [P(r - -  ~fl')xl2'(r)]l 2 

and the image is then linked to the object by : 

(5) i(oc) = Jh (p ,  f l -  ~)o(fl)d/~. 
O 

This is the same as considering a single turbulent 
layer of  dimensions larger than those of  the pupil, and as 
selecting a different part of  it for each image pixel, by 
moving the pupil across the wavefront. The parameter 
allows to control the impulse response correlation degree 
between two adjacent points. 

In particular, the Kolmogorov ' s  law says that the 
phase fluctuation power spectrum Wr is proportional to 
f -  l 1/3, f being the spatial frequency amplitude. The simu- 
lation of a turbulent wavefront is often limited to the cal- 
culation of  its phase ~ r ) ,  because the amplitude 
fluctuations are usually negligible, compared with those 
of the phase [1]. The wavefront �9 can thus be written : 

(1) ~O(r) = exp[j ~ r) ], 

Case of total anisoplanatism 

We propose here an extension of the simulation to a 
total anisoplanatism case. We call "total anisoplanatism" 
the case for which the angular pixel resolution is greater 
than the isoplanatism angle, and thus for which each pixel 
is in principle decorrelated from its neighbours. Theoreti- 
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cally, the maximum decorrelation between the images of 
two point sources separated by Ap pixels will be obtained 
for l a p  > D: the wavefront parts that are used in the calcu- 
lation of their respective responses are thus not connected. 
Consequently, for a N • N pixel image, we need to gene- 
rate a ND-diameter circular wavefront. For example, for a 
40 • 40 pixel object and a 32-element diameter pupil (a 
common case in our simulation), the wavefront to be calcu- 
lated should have a dimension of the order of 1280 x 1280 
elements. This poses a problem of memory size and com- 
putation time (several hours for a single image simulation). 

However, if we take for the object two point sources 
s I and s 2 separated by the camera's resolution angle, and 
compute the correlation rate between the two responses 
i 1 and i 2 lying in the image for different values of D / r  o 

and ~? (again with D = 32 elements), we observe (Fig. 2) 
that it reaches its limiting value faster than expected, i.e. 
before g = D = 32 ; the limiting value depends on the 
ratio D / r  o, r o being the Fried parameter [8]. In particular, 
for D / r  o = 3, we see that the correlation rate stabilizes 

from g _= 15 upwards. Choosing/? between 15 and 32, we 
can thus generate a smaller wavefront (with a diameter 
from 0.5 N D  to N D  elements). In the simulations presen- 
ted in the following of this paper, we chose f = 18, in 
order to place ourselves in the total anisoplanatism case. 

C. BONDEAU -- SIMULATION OF TURBULENCE-DEGRADED INFRARED IMAGE SEQUENCE 

in the case of horizontal propagation along a distance 
L ; C, 2 is the structure parameter of the refractive index 
fluctuations, characterizing the turbulence strength, and 
depends on the meteorological conditions. 

FIG. 3. - -  Original binary image 

Image binaire initiale 

We present in Figure 4 some simulations realized 
with a 32-element pupil along its diameter, f = 18 and 
D / r  o = 3 ; we are thus here in the case of total anisopla- 
natism. The images were saturated at the output. We can 
observe various deformations, especially at the tips of 
the object. 

FIG. 4. - -  Short-exposure images, total anisoplanatism 

Images en pose courte et anisoplandtisme total 

FIG. 2. - -  Correlation rate between the images of 
two neighbouring source points versus 

Taux de corrdlation entre les images de deux 
points  sources voisins en fonction de e 

The original image used in our simulations is in 
Figure 3. We reproduce here the type of observations that 
can be realized with an infrared imaging system, either in 
3-5 or 8-12 Ixm wavelength intervals. In order to simulate a 
high temperature difference between the object and the 
background, we chose a binary image. However, this simu- 
lation could be done in visible light, since the wavelength,t 
appears in the expression of the Fried parameter [ 1 ] : 

(6) r 0 = [0,423 L(2~ /2 )2Cen  ]-3/5 

We note that the deformations vary across the 
images, because of the anisoplanatism effect. These 
degraded images are temporally decorrelated from each 
other, since each coefficient set representing a phase 
sample is chosen randomly, and is independent from the 
other samples. In order to simulate a sequence of images 
captured at short intervals, we have to take into account 
the way in which turbulence evolves over time. This 
point is addressed in the following section. 

I I I .  S I M U L A T I O N  O F  A TURBULENCE- 
DEGRADED IMAGE SEQUENCE 

To simulate a whole sequence of short-exposure 
images, we have to take into account the temporal turbu- 
lence fluctuations, which last a few milliseconds. If we 
capture these images at shorter time intervals, they will 
show a certain correlation. Here we adopt the filtering 
principle of B. L. McGlamery 's  simulation [2], but apply 
it to the wavefront phase temporal spectrum. 
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I l i A .  I n i t i a l  data 

Following N. Roddier ' s  method, we can generate N 
phase samples ~p,, n = 1 . . . . .  N, each represented by its 
first K - 1 decomposi t ion  coefficients 1 set as column 
vectors a,, = [a2 ... ax , ]  v. N. Roddier  starts from the 
theoretical  covar iance matrix W of  the coefficients to 
generate the phase samples. The values of the W matrix 
are given by Noll  [6]. As for us, we used 4096 such 
samples that were calculated by the ONERA. These 
samples are tempora l ly  decorrelated from each other;  
they do not fol low any temporal  evolution law. If  we 
store these N column vectors a ,  side by side in a 
randomly way in a matrix A of dimensions (K - 1) • N, 
we obtain : 

(7) A = 

C/21 6122 " "  a2n "'" a2N [ 

/ " " : i 

ajl  r . . .  ajn . . .  ajN | ,  

I 
aKl aK2 . .. aKn . . .  aKN J 
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vector of A is formed by the N Zernike coefficients of  a 
given o r d e r j  and constitutes a white noise : 

(8) E[ajp ajq] = E[aj 2] c~(p, q), 

where p and q are integers between 1 and N, E[ ] is the 
mean operator and 6(p, q) is the Kronecker symbol.  As 
examples,  Figure 5 shows the different values of  a2n, a3n 
and a4, (n = 1 . . . . .  N). 

The structure function of  the phase tp is defined by : 

(9) ~o(P)  = (l~(r) - q~(r + p)12). 

In the case of  a Kolmogorov turbulence, ~ is theo- 
retically such that [8] : 

(10) ~ ( p )  = 6.88(p/ro)5/3, 

where p = ]Pl, We see (Fig. 6) that the structure function 
~b(P/ro) (continuous line), realized from 100 phase 
samples, is very close to the theoretical curve (dotted line). 

We use these data as the starting point  of  the 
construction of  a sample sequence. 

where aj, z is the j-th order coefficient of the n-th sample 
phase ~ ,  represented by the a column vector. Each row 

1. a~ is the piston m o d e  coeff ic ient  ( a v e r a g e  phase) ,  useless  for  the 
s imulat ion.  

FIG. 6. - -  S i m u l a t e d  p h a s e  s t r u c t u r e  f u n c t i o n  

Simulation de la fonction de structure des phases 

FIG. 5 .  - -  S i m u l a t e d  Z e r n i k e  coe f f i c i en t s  (a 2, a 3, a4) 

Coefficients de Zernike simulds (a2, a 3, a4) 

III.2. Temporal evolution of the turbulent 
wavefront phase 

To simulate an image sequence consists in simulating 
a turbulent wavefront sequence, that is to say, a turbulent 
wavefront phase sequence. The phase is expressed as a 
decomposit ion on a Zernike polynomial  base : 

K 
(11) ~ r ,  t) = ~ aj(t) Zj(r). 

j = 2  

The aim is finally to obtain a t ime-dependent  coeffi- 
cient sequence forming a set of  S data, each described by 
its K-1 components,  as indicated hereafter : 

4/7 ANN. T~L~COMMUN., 54,  n ~ 5-6, 1999 



328 

12) t ime 
a2(t ) a2(t + At) a2(t + 2At) ... a2(t + (S - 1)At) 

data 
: : ." : 

components 
aK(t) aa.(t + At) a g o  + 2At) ... aK(t+(S -- 1)At) 

At corresponding to the t ime interval between two 
tmage captures, and S to the number  of  images needed 
for the sequence. Each j - th  row vector  of  this matrix 
must follow the theoretic temporal  evolution of  each aj(t) 
coefficient, and simultaneously, each n-th column vector 
a (n = 0 .. . . .  S - 1) must define a phase that obeys the 
Kolmororov ' s  law. 

We use hereafter the fo l lowing notations : v stands 
for the temporal frequency, a n d f  = Orx , fy) is the spatial 

frequency, with m o d u l u s f  = V ~,j~,2).  

The temporal power  spectrum of  the turbulent wave- 
front phase coefficients depends on wind direction and 
speed. Here, let us suppose  that the wind speed V is 
oriented along the x axig (the s imulat ion principle can 
be extrapolated later to any direction).  The theoretical 
temporal power spectrum for a coefficient aj at a given 
o rder j  is then written [9] : 

o o  , ( v )  
(13) wj(v) = - ~ - ~  Mj -~,~, W e --~,~ d~. 

In the above equation, W e stands for the phase spatial 
power spectrum. For  a plane wave propagating through 
the atmosphere along a d is tance  L, in the case of a 
Kolmogorov turbulence, it is given by [1] : 

(14) We(f) = WeOCx,fy) = 0.033 (27r)-2/3(2.rdA) 2 
L 

f-Ill3 fc# (h) dh, 
0 

where A is the wavelength.  The structure constant  C 2 
of  the refractive index fluctuations depends only on the 
altitude. Therefore, in the case o f  horizontal propagation 
along a distance L, C, 2 is constant, which gives �9 

(15) We(f) = 0.033 (277")-2/3(2,~fl~)2 L f  -11/3 C2n . 

Taking Eq. (6) into account ,  we can s impl i fy  this 
expression by introducing %: 

(16) We(f) = 0.023 r 0 5/3f-11/3, 
and Eq. (13) becomes : 

(17) % (v) - 
0.023 %-5/3 

V 

2 \ -  11/6 

2. The number j  of a considered polynomial is related to m and n by : 

n = IPL('~v/Sj -- 7 -- 1)/2] 

(18) m : [ l  + 2 I P { { j -  1 - l P ( n ( n  + I)/2)]/2} i f n o d d  

21P {[j - IP (n(n + 1)/2)]/2} i rn  even 

IP = integer part 

C.  B O N D E A U  - -  S I M U L A T I O N  O F  T U R B U L E N C E - D E G R A D E D  I N F R A R E D  I M A G E  S E Q U E N C E  

Finally, i ~ j  (f) is the Four ier  t ransform of the j- th 
Zernike polynomial .  For  a given Znm polynomial  2 
(n = radial degree, m = azimutal frequency), its module 
can be written [6] : 

(19) i~j(f) I = ~ 21J n + ,(-DD] 
grD 

V 2 1  cos (m 0)J i f j  even } for m ~ 0 

%/-21 sin (mO)] i f j  odd 

1 fo rm = 0. 

111.3. Phase sample sequence construction 

First of all, we construct a set of  random variables 
whose power  spectrum corresponds to the theoretical 
temporal spectrum of  the Zernike coefficients at different 
orders. To do this, K - 1 numerical Gaussian white noise 
signals xj(t), {j = 2 . . . . .  K} are generated, with the same 
characteristics, at a given order j ,  as those of  the original 
coefficients : zero average, variance c~ 2 --- a f. Then, for 

each j ,  we filter the power spectrum [2i(v)[ 2 of  the x/t)  
signals with the normal ized-dens i ty  power  spectrum 

J 

wj(v) of each coefficient aj, and we call ~j(v) the square 

root of  the filtered power spectrum thus obtained : 

(20) yj(v)  -- Iwj(v)l "2 

We put the signals yj(t), set as row vectors Yi' together 
in a (K - 1) • S matrix (S being the number of yi(t) 
signal samples) : 

(21) 

K 

Each row vector of  Y represents a possible temporal 
evolution of  the corresponding Zernike coefficient ; but 
the phase samples that can be buil t  with each column 
vector of  Y do not necessari ly fol low the Kolmogorov 
turbulence model. 

Let  us consider now A matrix,  where each column 
vector a = [a2... aK] T representing one of  the N initial 
t ime-independent  phase samples  has been normalized 
(see paragraph IIl.  1). We calculate  W, the covariance 
matrix of  these data : 

AA v 
(22) W = - - .  

N 

Each element of  W matrix is then given by : 

(23) W/j = E la i aj[. 
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The singular value decomposit ion of  W gives A, the 
matrix of W eigenvalues, ordered in a decreasing manner, 
and P, the corresponding eigenvector matrix, such as : 

(24) W = P A P  T 

The eigenvectors are called principal axes of the data; 
the first of  them indicate  the directions of the largest 
variances of  our t ime-independent data. The projection of 
Y matrix onto these axes is defined by : 

(25) Z = PTE 

Each column vector  of  Z matrix thus contains the 
coordinates of  the cor responding  coefficient column 
vector of Y in the system formed by the principal axes. 

The covariance matrix of  Z is given by : 

Z Z  T p T y y T p  
(26) S S P T W ~ P "  

Assuming that the coefficient sequences of  Y follow 
the Kolmogorov turbulence model, they should have the 
same covariance matrix as the initial data : 

yyr  
W l ' =  S W, (27) 

which implies : 

(28) 
Z Z  T 
- -  = p T w p  = A. 

S 

The covariance matrix of  Z should be diagonal, with 
ItS diagonal elements equal to the eigenvalues of  W. 

A means of  recognizing correct sequences is there- 
fore to calculate the fol lowing distance : 

( 2 9 )  d = ZZTs - A . 

We use this quantity as a criterion to operate a selec- 
txon on our simulated sample sequences : those that give 
the minimum distance are the closest to the Kolmogorov 
turbulence model. We obtain this way sample sequences 
both temporal ly  correlated and spatially in accordance 
with the turbulence statistics. 

329 

FIG. 7. - -  S i m u l a t e d  s t ruc tu re  f u n c t i o n  o f  p h a s e  s equences  

Simulation de la fonction de structure des sdquences de phases 

III.5. Examples 

Figure 8 shows 4 image sequences obtained in the 
manner explained above. We can clearly see that the object 
image evolves. The condit ions here are : V = 6 m s - l ,  
D /r  o = 3 and At = 0. 25 s, that is, a sampling frequency 
of 4 Hz. 

III.4. Verifications 

The simulated wavefronts must follow the Kolrnogomv 
turbulence model. We can verify this by examining the 
phase structure function ~ ,  which definition and theore- 
tical expression are given in Eq. (9) and (10). Figure 7 
shows the structure function curve, calculated starting from 
300 phase samples coming from 100 different sequences 
(continuous line). We can see that this curve is close to the 
theoretical one (dashed line). Thus the simulation closely 
reproduces the turbulence effects on a wavefront. 

Fro. 8. - -  4 image  sequences  (D = 3r0) 

4 sdquences d ' images (D = 3%) 
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IV. C O N C L U S I O N  
R E F E R E N C E S  

We p resen ted  a s imula t ion  me thod  o f  h igh- reso lu t ion  

images  deg raded  by a tmospher i c  turbulence  in the aniso- 

planatic case.  The  s imula t ion  was  at first used for  images  

taken at fairly wide  t ime intervals,  and consequen t ly  tem- 

porally decor re la ted  f rom each  o the r ;  then it was  exten-  

ded to a w h o l e  i m a g e  s e q u e n c e  for  a g iven  s a m p l i n g  

f requency .  The  a c c o r d a n c e  o f  the  s imula t ion  wi th  the 

K o l m o g o r o v  tu rbu lence  mode l  is shown.  This s imulat ion 

is very useful  w h e n  we  wan t  to s tudy the tu rbu lence  

effects  on h igh - re so lu t ion  i m a g e  capture,  but w h e n  sui- 

table equ ipment  is not  available. Moreover ,  the work  that 

was developed here in the infrared case can also be applied 

to the case  o f  v is ib le  light. T h e s e  resul ts  can a lso  help 

with predic t ions  w h e n  a fur ther  restorat ion is p lanned.  
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