We propose a method and a tool for automatic generation of hardware implementation of a decision rule based on the Adaboost algorithm. We review the principles of the classification method and we evaluate its hardware implementation cost in terms of FPGA’s slice, using different weak classifiers based on the general concept of hyperrectangle. The main novelty of our approach is that the tool allows the user to find automatically an appropriate tradeoff between classification performances and hardware implementation cost, and that the generated architecture is optimized for each training process. We present results obtained using Gaussian distributions and examples from UCI databases. Finally, we present an example of industrial application of real-time textured image segmentation.
Publication
Télécharger la publication
Année de publication : 2005
Type :
Article de journal
Article de journal
Auteurs :
Mitéran, J.
Matas, J.
Bourennane, E.
Paindavoine, M.
Dubois, J.
Mitéran, J.
Matas, J.
Bourennane, E.
Paindavoine, M.
Dubois, J.
Titre du journal :
EURASIP Journal on Applied Signal Processing
EURASIP Journal on Applied Signal Processing
Numéro du journal :
7
7
Volume du journal :
2005
2005